当前位置:文档之家› 信号完整性培训1

信号完整性培训1


Entrinsic Skew Intrinsic Skew
Clock_Out
连线
In
负 载
Out
中国科大 快电际信号的边沿与理想时序边沿的偏离由于受某种因素(如噪声、串扰、电源电压 变化等)不断发生变化时,而且这种变化是随机的,这种现象就是我们常说的时序抖动, 或者说时序晃动。这种偏离相对于理想位置可能是超前,也可能是滞后的,时序抖动的数 值表示通常有两种:
一. 信号传输的四种电性等效模型
全波模型 分布模型(离散模型) 集总模型 直流模型
中国科大 快电子学 安琪
24
1. 全波模型
理论:“麦克斯威方程组”。 假设电磁波在一个无限大的平 面上行进:
电场指向x方向; 磁场指向y方向; 整个电磁场往z方向行进。
传播速度:光速, 阻抗:电场对磁场的比值,在自由空间里为377。 当平面波遇到一个高传导物体时,传播方向会随即发生变化。如果适当地调 整传播的物体,则平面波可以被导入到一个传输线里,这个我们称为“全波 模型”。 选择“边界条件”用以代表实际物体的几何结构以及所使用的材料,来求解 全 波模型的麦克斯威方程组。 即使非常简单的结构体,方程组也很难解出。
分布模型(离散模型)示意图
基本的传输线结构如图所示,理想上,它是由无限多的RLC网络所组成的,然而,为了 计算的目的(特别是为了时域的计算方便),我们通常选择有限个RLC网络来代表。其基本 的假设是每个RLC网络的延迟时间远小于信号的波长或者上升时间。 需要提醒的是,这种传输线模型仍然是用集总的元件来描述系统的,只不过这些元件 是分布在整个系统中,并且是足够小。以至于每个RLC网络的延迟时间远小于信号的波长或 者上升时间。我们称这种传输线模型为“分布模型”。在分布模型”中,我们使用了许多 分布元件来描述电波传输的性能。
所有项目都考虑为最差情况,即考虑了时间容限,但然,也有为了更 为保险,可以再加一些时间容限,但在当前的高速电路,增加时间容限也 是要付出代价的
中国科大 快电子学 安琪 14
影响信号完整性的主要因素
信号在传输线上的反射
信号在传输过程中的串扰
噪声(电源噪声,热噪声,地反弹噪声等) 电磁辐射
中国科大 快电子学 安琪
16
膝频率(fKnee)与 上升时间(tr )
中国科大 快电子学 安琪
17
电路元件的参数是对频率敏感的,在不同的频率范围内会表现出来 不同的特性。任何一种电参数,其数值仅在一定的频率范围内有效。 考虑两个极端情况: 1. 一个频率为 10 12 的正弦波 波形变化一个周期需要3万年。若输入到TTL电路,其输出电压 每天变化不到1V。 任何一个包含这样低频率的半导体器件的试验都会以失败而告 终。在这样长的时间尺度来看,集成电路只是一小块氧化硅。
时钟抖动的最大值,即:峰-峰值(Peak-Peak),单位一般为皮秒,常用ps来表示。 时钟抖动的均方根值,即所谓的标准方差(),单位一般也为皮秒( ps )。 数字信号的边沿抖动,对系统的影响可以认为是一种动态行为,或者说其影响是随 机的,对系统性能破坏更大,尤其是时钟信号的抖动,常常是制约高速数字系统性能的 根本因素。
中国科大 快电子学 安琪 13
时间容限(Timing Margin)
建立方程: 保持方程:
T1 tvalid(max) t flight(max) t setup CLK skew CLK jitter tvalid (min) t flight(min) thold(max) CLK skew CLK jitter
2. 一个频率为 1012 的正弦波 信号周期为1ps,数字电路根本无法响应这个频率的信号。 一些电路参数发生变化。如地线的电阻由于趋肤效应由0.01 (1KHz)变为1,并且还获得50的感应电抗。
中国科大 快电子学 安琪
18
到底多高的频率 会影响到高速数字 电路的设计呢

19
中国科大 快电子学 安琪
11
两类时序偏差
从更广义的角度出发,由于器件之间连线延迟的不同,或者负载条件的 不同,都有可能引起时序信号的实际“沿变”与理想的“沿变”不同。因此 可以将时序偏差分为两类: 内部时序偏差(Intrinsic Skew): 由逻辑器件内部产生的,表现为逻辑器件输出之间信号延迟上的差别。 外部时序偏差(Extrinsic Skew): 由于连线延迟和负载条件不同引起的延迟差别。
中国科大 快电子学 安琪
15
要点
在高速数字系统设计时,实际的数字波形必须考虑。既:要保持 信号的完整性。 信号完整性涉及到两个方面:波形完整性和时序完整性。 波形完整性要素:
上升和下降时间 上冲和下冲 振铃 噪声容限 占空比
时序完整性要素:
同步时序方程 时序偏差 时序噪声 时间容限
NM H VOH min VIH min NM L VIL max VOL max
这里有两个噪声容限定义:NMH表示高电平状态时的噪声容限, NML表示低电平状态时 的噪声容限。
中国科大 快电子学 安琪 8
二. 信号完整性
信号完整性讨论是为了确保可信的高速数据传输。在高速数字系统设计时,人们经 常会问到这样的问题:传输到目的地的信号是否如同人们所预期的那样?或者说:当信 号到达时是否处于良好的状态? 信号完整性涉及到两个方面:信号波形的完整性和时序的完整性。 信号波形的完整性:
t3 t t0 t 0 t t1 t1 t t 2 t 2 t t3
“1” 电平
“0” 电平
t0 t1
t2 t3
理想数字信号波形 – 数学模型2
式中:tr = t1 - t0 , tf = t3 – t2
中国科大 快电子学 安琪
5
2. 实际的数字信号
Fclock
CP /Q
将膝频率Fknee频看作为数字信号的
频率成分上限。
中国科大 快电子学 安琪 21
膝频率与上升时间
FKnee
0.5 tr
任何数字信号的膝频率只与数字信号的上升(tr)和下降沿时间(tf)有 关,而与时钟速率无关。 容易看出,上升沿时间越小,膝频率越大,上升沿时间越大,膝频率越小。 任何数字信号重要的时域特性基本上都是由FKnee频率以及其以下的频率成分所 决定。
膝频率(FKnee)
一个实验
Random “1” or “0”
D
Q
Fclock
CP
/Q
时钟信号的上升、下降时间为时钟周期的1%。 D触发器输出数字信号的特征与输入时钟类似。
中国科大 快电子学 安琪
20
频谱分析
Random “1” or “0”
D Q
谱分析
从频率Fclcok到频率Fknee,整个输出 功率密度谱呈-20dB/decade的斜率 下降。 在Fknee处附近,谱密度曲线开始快 速下降。 拐点频率Fknee的功率谱密度比正常 下降曲线低6.8dB。 输出信号的能量主要集中在低于拐 点频率Fknee的频率范围内。
3
信号完整性(Signal Integrity)
中国科大 快电子学 安琪
4
一. 数字信号
1. 理想的数字信号(二值函数)
数学模型1:
1 V (t ) 0
t 0 t t1
“1” 电平 “0” 电平
其它时间
t0
t1
理想数字信号波形 – 数学模型1
数学模型2:
V (t ) 0 t t0 ( ) tr 1 t t ( 3 ) tf
中国科大 快电子学 安琪 25
2.分布系统
简化数学模型: 用“电容”来描述电能 用“电感”来表示磁能, 用“电阻”来代表转换为热的能量损耗。 这些元件被定义成没有实际尺寸,由无损和 无延迟的导线将它们连接起来。 有了这些电路元件就不再需要麦克斯威方程 组和边界条件,利用这些电路元件就可以来 描述一个所谓的理想传输线的结构。
经常提及的术语是上述的五个基本概念,这就是:信号的上升时间(tr)和下降 时间(tf),波形的上冲(Overshoot),下冲(Undershoot)和振铃 (Ring)。以 及接收端的信号还存在多大的噪声容限(Noise Margin)。
中国科大 快电子学 安琪
9
时序的完整性
时序完整性主要关注的是同步时序方程是否能满足。经常涉及到是时序偏差 (Skew)和抖动(Jitter)的概念。 建立方程: 保持方程:
参数定义: 上升时间(tr): 下降时间(tf): 数字信号上升沿中对应满幅度电压的10% ~ 90%处的时间 间隔。 数字信号下降沿中对应满幅度电压的90% ~10%处的时间 间隔。
中国科大 快电子学 安琪
6
参数定义:
90% VH min 50% 10% Vth VL max
上冲(Overshoot)
两个重要结论:
任何电路若对膝频率FKnee及其以下频率有平坦的响应曲线的话,那么信号通 过此电路不会失真。 数字电路对高于其FKnee以上的输入频率成分的响应不会影响到对正常的对应 于低于FKnee的数字信号的处理。
中国科大 快电子学 安琪 22
集总系统与分布系统
中国科大 快电子学 安琪
23
高速数字系统设计中的信号完整性

中国科学技术大学

快电子学实验室
2005年4月8日
第一讲
几个基本概念
电源与地系统
中国科大 快电子学 安琪
2
一. 几个基本概念
信号完整性(Signal Integrity)
膝频率fKnee与上升时间tr
集总系统与分布系统 传输线与阻抗匹配
相关主题