当前位置:文档之家› 预应力混凝土连续梁桥设计 计算书

预应力混凝土连续梁桥设计 计算书

目录第一章概述 (4)1.1 地质条件 (4)1.2 主要技术指标 (4)1.3 设计规范及标准 (4)第二章方案比选 (5)2.1 概述 (5)2.2 比选原则 (5)2.3 比选方案 (5)2.3.1 预应力混凝土连续梁桥 (5)2.3.2 预应力混凝土连续刚桥桥 (7)2.3.3 普通上承式拱桥 (8)2.4 方案比较 (9)第三章预应力混凝土连续梁桥总体布置 (12)3.1 桥型布置 (12)3.2 桥孔布置 (12)3.3 桥梁上部结构尺寸拟定 (12)3.4 桥梁下部结构尺寸拟定 (13)3.5 本桥使用材料 (14)3.6 毛界面几何特性计算 (14)第四章荷载内力计算 (16)4.1 模型简介 (16)4.2 全桥结构单元的划分 (16)4.2.1 划分单元原则 (16)4.2.2 桥梁具体单元划分 (17)4.3 全桥施工节段的划分 (17)4.3.1 桥梁划分施工分段原则 (17)4.3.2 施工分段划分 (17)4.4 恒载、活载内力计算 (17)4.4.1 恒载内力计算 (17)4.4.2 悬臂浇筑阶段内力 (18)4.4.3 边跨合龙阶段内力 (19)4.4.4 中跨合龙阶段内力 (20)4.4.5 活载内力计算 (21)4.5 其他因素引起的内力计算 (23)4.5.1 温度引起的内力计算 (23)4.5.2 支座沉降引起的内力计算 (25)4.5.3 收缩、徐变引起的内力计算 (26)4.6 内力组合 (28)4.6.1 正常使用极限状态的内力组合 (28)4.6.2 承载能力极限状态的内力组合 (29)第五章预应力钢束的估算与布置 (32)5.1 钢束估算 (32)5.1.1 按承载能力极限计算时满足正截面强度要求 (32)5.1.2 按正常使用极限状态的应力要求计算 (33)5.2 预应力钢束布置 (39)5.3 预应力损失计算 (40)5.3.1 预应力与管道壁间摩擦引起的应力损失 (40)5.3.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失 (41)5.3.3 混凝土的弹性压缩引起的应力损失 (41)5.3.4 钢筋松弛引起的应力损失 (42)5.3.5 混凝土收缩徐变引起的应力损失 (42)5.3.6 有效预应力计算 (44)5.4 预应力计算 (45)第六章强度验算 (48)6.1 正截面承载能力验算 (48)6.2 斜截面承载能力验算 (51)第七章应力验算 (55)7.1 短暂状况预应力混凝土受弯构件应力验算 (55)7.1.1 压应力验算 (55)7.1.2 拉应力验算 (55)7.2 持久状况正常使用极限状态应力验算 (60)7.2.1 持久状况(使用阶段)预应力混凝土受压区混凝土最大压应力验算 607.2.2 持久状况(使用阶段)混凝土的主压应力验算 (62)7.2.3 持久状况(使用阶段)预应力钢筋拉应力验算 (65)第八章抗裂验算 (68)8.1 正截面抗裂验算 (68)8.2 斜截面抗裂验算 (72)致谢 (77)参考文献 (78)附录:外文翻译 (79)第一章概述1.1 地质条件桥位地质地形图图1-1 地质图1.2 主要技术指标桥面净宽:11+2×0.5m (分离式、无人行道)设计荷载:公路-I级行车速度:100km/h桥面横坡:2%通航要求:无温度:最高年平均温度43℃,最低年平均温度-5℃。

1.3 设计规范及标准1、《公路工程技术标准》(JTG B01-2003)。

2、《公路桥涵设计通用规范》(JTG D60-2004)。

3、《公路桥涵地基与基础设计规范》(JTG D63-2007)。

4、《公路桥涵施工技术规范》(JTJ 041-2000)。

5、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

第二章方案比选2.1 概述桥式方案比选是初步设计阶段的工作重点,一般要进行多个方案比较。

各方案均要求提供桥式布置图,图上必须标明桥跨位置,高程布置,上、下部结构形式及工程数量。

对推荐方案,还要提供上、下部结构的结构布置图,以及一些主要的及特殊部位的细节处理图。

设计方案的评价和比较,要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个符合当前条件的最佳推荐方案。

有时,占优势的方案还应吸取其他方案的优点进一步加以改善。

2.2 比选原则设计从安全性、技术适用性、施工难度、设计施工周期、经济性、实用性和观赏性等几方面对各比选方案进行评比,其中安全性为主要因素。

2.3 比选方案根据设计任务要求,依据现行公路桥梁设计规范,综合考虑桥位地质地形条件,拟定了三个比选方案:方案一:预应力混凝土连续梁桥方案二:预应力混凝土连续刚构桥方案三:普通上承式拱桥2.3.1 预应力混凝土连续梁桥1.桥梁总体设计该桥为预应力混凝土连续梁桥,共三跨,为58m+100m+58m=216m。

边跨与中跨比为58/100=0.58在0.5~0.8之内,主跨跨中处桥面高程为835.25m,桥面横坡为2%。

图2-1 连续梁桥布置图2.主梁a.截面形式:本桥箱梁为单箱单室截面,箱底宽6.5m,两侧翼缘宽2.75m,箱梁顶面全宽为12m。

b.截面尺寸:箱梁在各墩支点处的截面高度为1/15L~1/20L,取1/16.7L即6m,在跨中及桥端支点处的截面高度为1/30L~1/50L,取1/36.4L即2.75m;箱梁顶板厚30cm(跨中)~48cm(支点),腹板厚50cm(跨中)~75cm(支点),底板厚30cm(跨中)~70cm(支点)。

c.横隔板的设置:上部结构箱梁在各墩支点及桥端支点处设横隔板。

墩支点处横隔板厚250cm,端支点处横隔板厚150cm,横隔板与箱梁连接处均设有承托。

图2-2 跨中与墩顶截面图3.基础桥墩基础连成整体,基础采用嵌岩型钻孔灌注桩群桩基础,桥墩为6m×6.5m的空心墩,材料为C40钢筋混凝土。

4.施工方式主梁采用悬臂节段浇筑施工,桥墩采用爬模法施工,两端桥台采用整体现浇。

2.3.2 预应力混凝土连续刚构桥1.桥梁总体设计该桥为预应力混凝土连续刚构桥,共三跨,为58m+100m+58m=216m。

边跨与中跨比为58/100=0.58在0.5~0.8之内,主跨跨中处桥面高程为835.25m,桥面横坡为2%。

图2-3 连续刚构桥布置图2.主梁a.截面形式:本桥箱梁为单箱单室截面,箱底宽6.5m,两侧翼缘宽2.75m,箱梁顶面全宽为12m。

b.截面尺寸:箱梁在各墩支点处的截面高度为1/15L~1/20L,取1/16.7L即6m,在跨中及桥端支点处的截面高度为1/30L~1/50L,取1/36.4L即2.75m;箱梁顶板厚30cm(跨中)~48cm(支点),腹板厚50cm(跨中)~75cm(支点),底板厚30cm(跨中)~70cm(支点)。

c.横隔板的设置:上部结构箱梁在各墩支点及桥端支点处设横隔板。

墩支点处设两个厚300cm横隔板,端支点处横隔板厚150cm,横隔板与箱梁连接处均设有承托。

图2-4 跨中与墩顶截面图3.基础桥墩基础连成整体,基础采用嵌岩型钻孔灌注桩群桩基础,桥墩为3m×6.5m的双薄壁空心墩,材料为C40钢筋混凝土。

4.施工方式主梁采用悬臂节段浇筑施工,桥墩采用爬模法施工,两端桥台采用整体现浇。

2.3.3 普通上承式拱桥1.桥梁总体设计该桥为普通上承式拱桥,主跨跨径为150m,拱高为25m,矢跨比为25/150=1/6,在1/5~1/10之内,主跨跨中处桥面高程为835.25m,桥面横坡为2%。

图2-5 普通上承式拱桥布置图2.主梁a.截面形式:本桥主梁为空心板截面,板高80cm,板宽120cm 。

b.截面尺寸:空心板截面高度为80cm,空心板顶、底板厚15cm,肋宽30cm。

图2-6 空心板截面图3.主拱圈a.截面形式:本桥主拱圈采用等截面悬链线,由6*1.6m的小箱梁组成,箱梁顶面全宽为9.6m。

b.截面尺寸:主拱圈的截面高度为2.3m;箱梁顶、底板厚25cm,肋板厚15。

c.横隔板的设置:主拱圈内部在拱脚以上10m段内加厚顶、底、侧板,以达最佳受力效果。

图2-7 主拱圈截面图4.拱上立柱拱上立柱为直径1m的空心墩。

5.基础桥墩基础连成整体,基础采用嵌岩型钻孔灌注桩群桩基础,桥墩均为直径1m的空心墩,材料为C40钢筋混凝土。

6.施工方式主梁采用预制节段拼装施工,桥墩采用爬模法施工。

2.4 方案比较方案比选从该桥桥址的实际地理位置地形环境,结合实用耐久、安全可靠、经济合理、美观和有利于环保的设计原则综合考虑。

从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。

a.实用性桥上应保证车辆安全畅通,并应满足将来交通量增长的需要。

桥下应满足泄洪、安全通航或通车等要求。

建成的桥梁应保证使用年限,并便于检查和维修。

只有满足了这一基本条件后,才能谈得上对桥梁结构的其他要求,既做到总造价经济,又保证工程质量和使用安全可靠。

b.舒适与安全性现代桥梁设计越来越强调舒适度,故应控制桥梁的振幅,避免车辆受到过大振动与冲击。

整个桥跨结构及各部件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。

c.经济性设计的经济性应综合发展远景及将来的养护和维修等费用。

d.美观一座桥梁,尤其是作为一个城市或地区的标志性建筑的大跨径桥梁更应具有优美的外形,同时应与周围的景致相协调一致。

合理优美的结构布局和轮廓是美观的主要因素,而非豪华的装饰。

e.有利于环保桥梁设计应考虑环境保护和可持续发展的要求。

从桥位选择、桥跨布置、基础方案、墩身外形、上部结构施工方法、施工组织设计等全面考虑环境要求,采取必要的工程控制措施,并建立环境监测保护体系,将不利影响减至最小。

方案比选时应根据上述原则,对拟定的桥梁比选方案作出综合评估,选出最优的桥梁方案。

以下为各比选方案的性能对比表:表 2.1 比选方案对照表通过对各设计方案在技术及施工适用性,安全性,经济性,实用性,美观性,设计、施工周期等几方面的综合对比分析,结合玉溪大桥总体布置的需要,预应力混凝土连续梁桥优势明显,被确定为最终设计方案。

第三章预应力混凝土的连续梁桥总体布置3.1 桥型布置本设计采用三跨预应力混凝土变截面连续梁结构,桥梁总长216m,桥梁起始里程桩号为K145+370.00m,终止里程桩号为K145+586.00m,桥面标高为835.25m。

3.2 桥孔布置连续梁跨径的布置可采用等跨和不等跨两种。

采用等跨布置结构简单,模式统一,适于采用顶推法、移动模架法或简支转连续法施工的桥梁,但等跨布置将使边跨内力控制全桥设计,不是很经济。

所以,连续梁跨径布置一般以采用不等跨形式。

为减少等跨布置时边跨及中跨跨中正弯矩,可将连续梁设置成不等跨形式。

相关主题