镜像法思路用假想的镜像电荷代替边界上的感应电荷。
保持求解区域中场方程和边界条件不变。
使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。
使用范围界面几何形状较规范,电荷个数有限,且离散分布于有限区域。
步骤确定镜像电荷的大小和位置。
去掉界面,按原电荷和镜像电荷求解所求区域场。
求解边界上的感应电荷。
求解电场力。
平面镜像1点电荷对平面的镜像(a) 无限大接地导体平面上方有点电荷q(b)用镜像电荷-q代替导体平面上方的感应电荷图4.4.1 点电荷的平面镜像在无限大接地导体平面(YOZ 平面)上方有一点电荷q,距离导体平面的高度为h。
用位于导体平面下方h处的镜像电荷-q 代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。
去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。
电位:(4.4.2.1)电场强度:(4.4.2.2)其中,感应电荷:=>(4.4.2.3)电场力: (4.4.2.4)图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像无限长单导线对平面的镜像与地面平行的极长的单导线,半径为a,离地高度为h。
用位于地面下方h 处的镜像单导线代替地面上的感应电荷,边界条件维持不变。
将地面取消而代之以镜像单导线(所带电荷的电荷密度为)电位: (4.4.2.5)对地电容:(4.4.2.6平面镜像2无限长均匀双线传输线对平面的镜像与地面平行的均匀双线传输线,半径为a,离地高度为h,导线间距离为d,导线一带正电荷+,导线二带负电荷-。
用位于地面下方h处的镜像双导线代替地面上的感应电荷,边界条件维持不变。
将地面取消而代之以镜像双导线。
图 4.4.4 无限长均匀传输线对地面的镜像求解电位: (4.4.2.8)(4.4.2.9)平行导线间单位长度电容:(4.4.2.10)其中小天线的镜像与地面的小天线,长度为l ,离地高度为h 。
用位于地面下方h 处的镜像小天线代替地面上的感应电荷,边界条件维持不变。
与自由空间的天线比较,当天线离平面很近时,若天线与平面平行,辐射功率为零,若天线与平面垂直,辐射功率增强。
若天线与平面倾斜放置,则辐射功率的变化与倾斜角度有关。
具体辐射功率的计算请参看天线辐射(超链),此处仅给出思路和结论。
点电荷对相交接地平面的镜像条件:两相交接地平面夹角为,n=1,2,3…镜像电荷:2n-1个。
若两相交接地平面夹角不满足上述条件,则镜像电荷为无穷多个。
图 4.4.5 点电荷对相交接地地面的镜像点电荷对介质平面的镜像1区和2区为不同介质,求解时要分区域考虑。
求解区1的场:在区2置镜像电荷。
求解区2的场:在区1置镜像电荷。
图4.4.6 点电荷对介质平面的镜像求解和:z>0时, (4.4.2.11)z<0时, (4.4.2.12)根据边界条件、可以解得(4.4.2.13)(4.4.2.14)分区域考虑镜像电荷。
求单导线的对地电容求单导线的对地电容。
一根极长的单导线与地面平行。
导线半径为a,离地高度为h,求单位长度单导线地对地电容。
单位长度单导线的对地电容可表示为(式1)。
式中为单导线的电位,为地电位(=0),为导线的线电荷密度。
现在需要例题图4.9求出,用镜像法求解。
单位长度单导线的对地电容可表示为(式1)。
式中为单导线的电位,为地电位(=0),为导线的线电荷密度。
现在需要求出。
令(近似认为均匀分布于导线表面),利用镜像法,将地面取消而代之以镜像单导线(带)。
则原地面上方任意点P 的电位为(式2)。
式中、分别代表镜像单导线及原单导线到P点的垂直距离。
由2式可知为。
把此式代入1式则得单导线对地电容为(式3)。
有了上式,就可以方便地写出平行双导线间的单位长度的电容为(式4)。
式中,D为平行双导线间的距离(相当于本题中的2h),a为导线半径。
若D>>a,就可以简化为式4的近似式。
掌握如何利用平面镜像法求解典型传输设备的对地电容。
球面镜像1点电荷对接地导体球的镜像题目:半径为a的接地导体球,在与球心相据的一点电荷。
在导体球内,距离球心处的点处置一镜像电荷来代替导体球上的感应电荷,边界条件维持不变,即导体球面为零电位面。
去掉导体球,用原电荷和镜像电荷求解导体球外区域场,注意不能用原电荷和镜像电荷求解导体球内区域场。
求解镜像电荷的大小和位置:将原导图4.4.7 点电荷对接地导体球的镜像体球移去,及像电荷在原球面上任一点P处产生的电位应为零,即(4.4.3.1)我们在球面上取通过的直径的两端点,对于这两点的电位式为(4.4.3.2) (4.4.3.3)以上两方程解得 (4.4.3.4) (4.4.3.5)求解电位、电场强度、感应电荷:的表达式表示对于球面上任一点P,与是相似三角形,即,于是球外任意一点的电位为(4.4.3.6)采用球坐标,取原点为球心O点,z轴与轴重合,则球外任一点处有 (4.4.3.7)(4.4.3.8)这样可求得电场的分量为(4.4.3.9)(4.4.3.10)r=a时球面上的感应电荷密度为(4.4.3.11)(1)点电荷对不接地、净电荷为零的导体球的镜像。
(2)点电荷对不接地、净电荷不为零的导体球的镜像。
(3)接地球形空腔内电荷的镜像球面镜像2无穷镜像问题(a)(b)图4.4.8 无穷镜像问题半径为a的金属球,带电荷,球心离地高度h。
为满足金属球为等位面,但电位不等于零及地面为零等位面的边界条件,我们需要用一系列的电荷去代替金属球和地面两个边界的影响。
若仅是孤立球体,则将电荷集中于球心来代替导体球的分部电荷,这样就满足了金属球面为等位面的边界条件。
但是有了地面影响,还应满足地面为零等位面的边界条件。
为满足这个条件,就要找出置于球心的镜像电荷,这就是,而且满足。
的出现虽然使地面的边界条件得到了满足,但球面的等位面条件却被破坏了。
我们需要再按照球面镜像的方法求出在球内的镜像电荷。
的出现,又出现了出现时所遇到的情况,我们又需要球它的地面镜像……这样就需要一系列的电荷去代替金属球和地面两个边界的影响。
求解镜像电荷的大小和位置:镜像电荷镜像离球心距离……………………式中求解电位、对地电容:球体的点电荷为(4.4.3.12) 金属球的电位应为所有电荷、、、…产生的,但和这对电荷、和这对电荷、…直至无穷的成对电荷都是维持金属球面为零电位的,唯独置于球心的电荷使金属球具有电位,其值为 (4.4.3.13)所以金属球的对地电容为(4.4.3.14)式中第一项为孤立金属球的电容圆柱面镜像1概念几何轴:物体的轴线。
电轴:电荷分布的轴线。
问题已知边界条件、原电荷、几何轴,求镜像电荷,即镜像电轴位置及电荷量。
已知给定电轴,求等位面、几何轴。
线电荷对导体圆柱的镜像半径为a的接地导体圆柱外有一条和它平行的线电荷,密度为,与圆柱轴相距为。
用位于导体圆柱内,距离圆柱轴线处的镜像线电荷代替导体圆柱上的感应电荷,边界条件维持不变,即导体圆柱面为零电位面。
图4.4.9 圆柱导体与线电荷的镜像去掉导体圆柱,用原线电荷和镜像线电荷求解导体圆柱外区域场,注意不能用原电荷和镜像电荷求解导体圆柱内区域场。
求解镜像电荷的大小和位置:我们用的关系进行试探求解。
同样在圆周上去两点(通过镜像电荷的直径的两端点),因为圆柱接地,它们的电位必须为零,即(4.4.4.1)(4.4.4.2)代入的关系后,上面两方程解得(4.4.4.3)求解电位:圆柱外任一点的电位为(4.4.4.4)其中、分别是、到场点的距离。
(1)线荷对不接地、净电荷为零的导体圆柱的镜像。
(2)线电荷对不接地、净电荷不为零的导体圆柱的镜像圆柱面镜像2给定电轴,确定几何轴位置和等位面两条互相平行的导线,其线电荷密度分别为和-。
视这两条极细的带电导线分别为两个电轴。
求解几何轴的位置可以直接写出P点的电位为由图可见,XOZ平面为零电位面,即时,。
图4.4.10 确定两个给定电轴的几何轴于是可知常数C为零,则的表达式为,取()为常数就可得到等位线,即取。
k为常数。
由图可知、。
所以可得(4.4.4.5)这是一个圆方程。
其参数为圆心位置:(4.4.4.6)半径: (4.4.4.7)即等位线为一簇圆,其圆心自然是位于等位圆的圆柱面的几何轴心上。
圆心和半径都是k的函数。
实际问题往往是这样:知道两条平行导线的半径及相互间的距离,而需要确定电轴的位置。
这就要找到如图示的b.R.d之间的关系。
图求两个导体圆柱间单位长度的电容两根无限长平行圆柱,半径均为a ,轴线距离位D。
求两圆柱间单位长度上的电容。
例题图4.10把圆柱看成两平行线电荷及-的场中的两个等位面,只要求出两线电荷的位置,便可得到解。
这里和可由D和a定出。
即、解得、对于左边圆柱面上的点,有这样的关系,故左边圆柱的电位为对于右边圆柱上的点有,电位为两圆柱间电压为故两圆柱间单位长度的电容为如果,则。
掌握如何利用柱面镜像法求解典型传输设备的电容。