A F D EBC 数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A 2.C 3.A 4.B 5.B6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.11.112.14 13.15 14.4 15.18 16.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF ,即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE ,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-5019.(本小题满分8分) 解:原式221(1)(1)(1)x x x x ······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分20.(本小题满分8分)解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分(2)证明如下:由(1)得BC ∥OA ,BC 12OA , ∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分)解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇, 故4(60)2003v 乙, 解得90v 乙m/min . ···························································································· 4分答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分 20010603a . ································································································ 8分 ∴a 的值为103,b 的值为209.22.(本小题满分10分)解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分 ∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600 (户), ···························································· 8分∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000, ∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°. ∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF , ∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立.∵AC <AB , ∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°, ∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立,此时AF 垂直平分GB ,即AG =AB .∵AC <AB , ∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分 ∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分 ∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°,即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°. ∵∠BAC 90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°,∴sin ∠DBF FD DB ················································································ 5分 ∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG ,∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,F B A C D E。