当前位置:文档之家› 有机过渡金属反应机理和催化资料

有机过渡金属反应机理和催化资料

(3)面配位体中若离域电子为奇数个,视为 使金属带一个正电荷,因为按照共振结构 可认为形成了一根σ键和若干侧基配位的π 键;若离域电子为偶数个,视为不改变金 属氧化态,因为这种配体不需要金属拿出 任何电子来与之成键,所以不使金属带正 电荷。由于金属电负性小且具有反馈能力, 一般也不认为会使金属带负电荷。
图1 烯烃(左)和CO (右)与金属离子成键作用图
(3)离子均给予金属。例 如下列配合物中从左至右配体分别提供2,3,4,5, 6个电子。
图2 面配位络合物
图3 面配位体与多齿配体关系示意图
1.1.2 氧化态
标记金属配合物中金属的氧化态主要为研究催 化机理提供方便,并不是真正地指明金属的电荷 数。因此金属的氧化态具有较大的人为规定因素, 这些规定如下所示。
有机过渡金属反应机理和催化
Eric V.Anslyn [美] 著
计国桢 佟振合 [中科院] 译 王文峰 [福州大学] 制作
1.有机金属配合物基础知识
1.1 电子数和氧化态
1.1.1 电子计数方法
金属配合物电子计数方法主要取决于配体提 供电子数的计算。计数规则如下: (1)与金属每形成一根共价键,视为配体提供给 金属一个电子。例如: M-H; M-R; M-X; M-OR; M-NR2 . (提供一个电子)
转金属化是协同反应,形成过渡态的那一步就是 决速步骤。
(2)构效关系
对于金属大致有如下规律:(1)18电子结构 的金属配体交换慢,17电子结构快;(2)同族金 属中第四周期的(如Mo和Pd)往往快于第三周期 (Cr和Ni)和第五周期(W和Pt)。原因待证明。
对于配体,好的给电子配体(如胺和膦)能加 速解离取代反应,可能是旧配体解离时,新配体 已经部分成键了;与给电子配体处于顺式的CO容 易解离;对于锥形配合物,锥角越大越不稳定, 解离速率越快;越好的给电子配体解离速率越慢, 如烷基膦比芳基膦难解离。
1.3 标准几何构型和d轨道分裂模式
图5 各种配位构型的d轨道能级分裂模式 d轨道裂分的几个大致规则: (1)沿着配体键的d轨道能级升高; (2)平行于键轴的d轨道能级略有升高,但增加不多; (3)与键轴不平行的d轨道能级基本不变。 (4)强给电子配体(如膦)造成的分裂能大,弱给电子配体(如烯)分裂能小。
1.1.3 电子计数和氧化态标记举例
图4 金属配合物电子计数和氧化态标记举例说明图
1.2 18电子规则
有机金属物种中的18电子规则不像主族 元素的8电子规则那样严格,但这个规则仍 然很有价值。(1)大多数情况下,满足此 规则的有机金属化合物比不满足此规则的 相应化合物稳定;(2)配位键和共价键一 样具有饱和性和方向性,所以此规则可判 断配位饱和的有机金属化合物和配位不饱 和的有机金属化合物,也能指出有机金属 化合物的亲电性和亲核性,这对于研究催 化反应机理十分重要。
2.2 氧化加成
定义:发生在金属上且提高了金属的氧化态的加成 反应。 2.2.1 氧化加成的立体化学
氧化加成通常发生在16电子的平面四边形结构的金属 上,有顺式加成和反式加成两种情况。
2.2.2 氧化加成的动力学
化焓反5-应9k(Ca7l)/m对ol,金活属化配熵合-5物0eu和;C反H3应X均速为率一随级极,性活加 大而增大;对不同离去基团,I>Br>Cl, 对不同膦 配体,给电子能力越强,速率越大。表明金属在 反应中作为一个亲核试剂,建议机理如下。
图6 金属配合物反式氧化加成机理
对反应(5),反应对金属配合物和H2都是一 级。活化焓和活化熵为11-12kCal/mol, 活化熵为 23eu;溶剂效应较小,同位素效应也很小(约 1.2),表明过渡态中H-H键较少断裂;通常d8金 属配合物反应较快而d10金属配合物反应不理想, 表明必须有空轨道才能使反应顺利进行。根据这 些事实建议了一个协同反应机理。
2.1.2 配体交换反应的动力学和构效关系
(1)动力学
解离机理和络合机理都是分步反应,哪一步是 速率决定步骤呢?一般说来断键的那一步比成键 的那一步慢,所以这两种机理的决速步骤都是解 离那一步,与实验观察到的反应的活化熵很正相 吻合。金属配合物的加成反应通常是很快的,以 至于对不同配体都没有选择性,接近于扩散控制。
(3)转金属化(transmetallation, 边走边来型)
转金属化指一种金属-R物种与另一种金属有机物种的配 体发生交换。这种反应一般通过四中心过渡态自发进行, 多数情况下是单电子给体之间的交换。这个反应通常要求 两种金属都有空配位点。
注意,反应(4)产物中的乙烯配体只能写成端基配位的单电子配体形式,不能 写成侧基配位的双电子给体形式。
2. 常见的金属有机反应
2.1 配体交换反应
2.1.1 反应类型
(1)解离机理型(即先走后来型) 满足18电子构型的金属配合物一般遵循这种机理。
(2)络合机理型(即先来后走型)
16电子结构的金属有机化合物发生配体交换时往往采 用这种先来后走的机理。因为此时若采用先走后来型机理, 就会经历一个14电子结构的中间体。
亚烷基配体和次烷基配体分别视为给金 属提供2个电子和3个电子。
(2)与金属形成配位键或者反馈键的,视为配体 提供给金属一对电子。例如下列例子中每个配 体均提供一对电子。
M-PR3; M-NH3; M-CO;
注意:含N,P的配体既可以和金属形成共价键,也可形成配位键,这两 种情况下配体提供的电子不一样。烯烃与金属端基配位时也只提供一 个电子,但侧基配位时提供两个电子,因为侧基配位形成了反馈键。
图7 金属配合物反式氧化加成机理
(1)与金属成键(无论σ键还是π键)的配体都被 认为完全从金属得到了一个电子,因此每根键都 使金属带一个正电荷。例如烷基配体(R-)、亚烷 基配体(R1R2C=)和次烷基配体( )分别使金属带1、 2和3个正电荷。
(2)与金属形成配位键和反馈键的配体视为 不改变金属的氧化态。所以中性的CO、胺、 膦以及烯和炔等分子与金属配位时都视为 不改变金属的氧化态。
相关主题