当前位置:文档之家› 石灰石石灰法湿法烟气脱硫技术 ppt课件

石灰石石灰法湿法烟气脱硫技术 ppt课件

吸收区高度为5~15m, 如按塔内流速3m/s计算, 接触反应时间2~5s。区内设 3~6个喷淋层, 每个喷淋层都装有多个雾化喷嘴, 交叉布置, 覆盖率达 200%~300%。喷嘴人口压力不能太高, 在0.5×105~2×105Pa之间。喷嘴出口 流速约10m/s。雾滴直径约1320~2950μm,大水滴在塔内的滞留时间1~10s, 小 水滴在一定条件下呈悬浮状态。喷嘴用碳硅制造, 耐磨性好, 使用寿命10年以上。
石灰石系统中最关键的反应是Ca2+的形成,
因为SO2,正是通过Ca2+与HSO3-反应而得以从溶 液中出去的。
这一关键步骤也重要的区别:石灰石系统中, Ca2+
的产生与H+浓度和CaCO3的存在有关;而在石灰 系统中, Ca2+的产生仅与氧化钙的存在有关。因
此,为了保证液相有足够的Ca2+浓度,石灰石系
③除雾器堵塞:在吸收塔中,雾化喷嘴并不能产生尺 寸完全均一的雾滴,雾滴的大小存在尺寸分布。较小的雾 滴会被气流所夹带,如果不进行除雾,雾滴将进入烟道, 造成烟道腐蚀和堵塞。除雾器必须保持清洁,目前使用的 除雾器有多种形式(如折流板型等),通常用高速喷嘴每 小时数次喷清水进行冲洗。
④脱硫剂的利用率:脱硫产物亚硫酸盐和硫酸盐可沉 积在脱硫剂颗粒表面,从而堵塞了这些颗粒的溶解通道。 这会造成石灰石或石灰脱硫剂来不及溶解和反应就随产物 排除,增加了脱硫剂和脱硫产物的处理费用。因此脱硫液 再循环池中的停留时间一般要达到5~10min。实际的停留 时间设计与石灰石的反应性能有关,反应性能越差,为使 之完全溶解,要求它在池内的停留时间越长。
石灰石/石灰法 湿法烟气脱硫技术
石灰石/石灰法湿法烟气脱硫技术(CaCO3/CaO wet FGD),是目前世界上技术最成熟、实用业绩最多以及运行 状况最稳定的脱硫工艺是世界上最成熟,应用最广泛的烟气 脱硫技术。在基本原理上属于无机化学脱硫的范畴,是最基 本的酸碱中和法。采用石灰或石灰石乳浊液吸收烟气中SO2, 生成半水亚硫酸钙或石膏(CaSO4·2H2O) ,脱硫率在90 % 以上。
吸收塔内的传质过程可用以下双膜模型公式表示: NTU = K×(L/G)α×(K1×Vβ+K2)×(K3×Ctγ+K4) ⑴ NTU = (y1-y2)/(y1-yθ-y2)×ln((y1-yθ)/y2) ⑵ η(%) = (y1-y2)/y1×100 ⑶
其中:N T U —传质单元数;传质单元数越大,吸收塔的脱硫效率越高。 K1, K2, K3, K4—常量; K —喷淋层布置相关系数; (L/G)—液气比(L/m3),与流经吸收塔单位体积烟气量相对应的浆液喷
吸收塔试验器脱硫系统的核心装置,要求有持液量大、气液相间的相对速 度高、气液接触面积大、内部构件少、压力降小等特点。目前较常用的吸收塔 主要有喷淋塔、调料塔、配设鼓泡塔、道尔顿型塔4类。其中喷淋塔是湿法脱 硫工艺的主流塔形。一般SO2去除率高的洗涤塔,往往是操作可靠性最差的。
3.湿法脱硫的影响因素
①设备腐蚀:化石燃料燃烧的排烟中含有多种微量的
化学成分,如氯化物。在酸性环境中,它们对金属(包括 不锈钢)的腐蚀性相当强。目前广泛应用的吸收塔材料是 合金C-276,其价格是常规不锈钢的15倍,为延长设备的 使用寿命,溶液中氯离子的浓度不能太高。为保证氯离子 不发生浓缩,有效地方法是在脱硫系统中根据物料平衡排 出适量的废水,以清水补充。
统在运行时,其pH较石灰系统的低,石灰石系统
的最佳操作pH为5.8~6.2,石灰系统约为8。
2.工艺流程及设备
典型的石灰石/ 石膏湿法FGD 系统工 艺流程主要由石灰石浆液制备和供应、吸 收塔、脱硫产物处置、烟风道、电气和自 动控制6个部分组成。
吸收塔
吸收塔多采用逆流方式布置, 烟气从喷淋区下部进人吸收塔, 与均匀喷出的 吸收浆液逆流接触。烟气流速为3m/s左右, 液气比与煤含硫量和脱硫率关系较 大, 一般在8~25 l/m3之间。空塔优点是塔内部件少, 结垢可能性小, 运行可靠性 高。逆流运行有利于烟气与吸收液充分接触, 但阻力损失比顺流大。
⑤脱硫产物及综合利用:半水亚硫酸钙通常是较细的 片状晶体,这种固体产物难以分离,也不符合填埋要求。 而二水硫酸钙是大的圆形晶体,易于析出和过滤。因此, 从分离的角度看,在循环池中鼓氧或空气将亚硫酸钙盐氧 化为硫酸盐是十分必要的,通常要保证95%的脱硫产物转 化为硫酸钙。
4.主要工艺参数
(1) 传质理论 ① S在O吸2从收气塔相内透,过SO气2膜的向吸气收可液用界双面膜传理递论、描扩述散,;吸收反应经历以下3 个过程: ② SO2在液膜表面溶解; ③ SO2从气液界面透过液膜向液相传递并随即与钙基吸收剂发生化学反应。
淋量; V —烟气流速(m / s),烟气在吸收塔内的流速; C t—吸收剂浓度(k g / m3 ); α、β、γ—常数,1>α> β> γ> 0; y1、y 2—吸收塔入口、出口处SO2浓度(mg/L); y θ—吸收塔内SO2平衡浓度(m g / L); η—吸收塔脱硫效率(% )。
②结垢和堵塞:CaSO3或CaSO4从溶液中结晶析出是 导致脱硫塔发生结垢的主要原因,特别是硫酸钙结构坚硬、 板结,一旦结垢难以去除,影响到所有与脱硫液接触的阀 门、水泵、控制仪器和管道等。硫酸钙结垢的原因是SO42和Ca2+的离子积在局部达到过饱和。为此,在吸收塔中要 保持亚硫酸盐的氧化率在20%以下。亚硫酸盐的氧化需要 在脱硫液循环池中完成,可通过鼓氧或空气等方式进行, 形成的硫酸钙发生沉淀。从循环池返回吸收塔的脱硫液中, 还因为含有足量的硫酸钙晶体,起到了晶种的作用,因此 在后续的吸收过程中,可防止固体直接沉积在吸收塔设备
1.反应原理
用石灰石或者石灰浆液吸收烟气中的SO2,首先生成亚 硫酸钙:
石灰石:CaCO3+ SO2+0.5H2O→CaSO3•0.5H2O+CO↑ 石灰:CaO+ SO2+0.5H2O→CaSO3•0.5H2O
然后亚硫酸钙再被氧化为硫酸钙。
石灰石石灰法湿法烟气脱硫反应机 理比较表格
石灰石系统和石灰系统的主要区别
相关主题