当前位置:文档之家› 医学-功能磁共振技术现状与发展

医学-功能磁共振技术现状与发展


首先要根据实验目的需要设计实验,分组块设 计(Block Design)和事件相关设计(Event-related Design)。实验设计需要保证很高的时间精度,通常 要求不超过几毫秒的误差,因此需要一些专用的心 理实验软件如E-primeⓇ 、 pre-sentationⓇ等。在实 验前面要写上指导语,然后呈现任务刺激、随后屏 幕呈现十字交叉线,提示受试者注视屏幕,不放认 知任务;任务重复几次,有助于提高统计的可靠性。 图1的例子是一个典型的视觉实验任务,让受试者注 视屏幕,任务刺激是闪动的棋盘格,控制刺激是十 字交叉线。首先受试者注视十字交叉线的交点,试 验将按照图示时间及内容进行。
功能磁共振技术发展概述
脑是心灵的器官,脑的奥秘一直是 几千年来人们所探索的课题。从古至今, 科学家研究脑的途径多种多样:对脑的 直观理解是通过脑损伤病人而获得的。 1861年法国医生布罗卡发现有些病人能 听得懂别人说话,发音器官是正常的, 但是除了个别音外,不会发其他声音, 病人死后尸检发现患者左侧额叶区受到 损伤,他判断是该区负责更 多的定量分析,则可以在数据采集完成 后,采用功能更加强大的软件来分析, 如SPM、AFNI和FSL等。最后采集三维 全脑结构像,如采用矢状面采集,图像 矩阵为256× 256 ×124层。
功能磁共振成像获得大量图像,通 过在线实时处理或离线处理方法进行图 像的配准、统计可以获得针对实验任务 的激活区,这些脑区的激活程度差异, 不同激活脑区之间的相互关系等,把激 活结果叠加到三维个体磁共振图像或标 准化脑模板图像上,使人们对脑的高级 功能有更加丰富的理解。
医学成像技术的发展为脑的研究带来了 新的手段。通过事件相关单位(ERP)可以实 时观察受试者在进行认知加工时的脑电活动。 而功能磁共振成像技术(fMRI)的诞生,则可 以通过脑区局部血氧含量的变化间接观察的 活动。一百多年来人们就推测血氧活动与神 经活动有着紧密的联系,神经细胞激活时需 要消耗局部毛细血管中的氧。当神经无放电 后大概4-6秒便出现血氧反应。BOLD 信号的 发现让神经科学、认识科学、心理学、临床 脑科学研究者如获珍宝,也奏响了影像学研 究发展崭新的乐章。
功能磁共振技术 现状与发展
刘怀军
2019.1
功能磁共振成像(functional magnetic resonance imaging, fMRI)是近年来迅速发展起来的MR技术, 主要是用于脑科学研究即人脑高级功能的研究。 了解人脑的高级功能可以使人类更好地认识脑、 保护脑、开发脑和利用脑,并为许多重大脑疾 病(如老年痴呆、儿童精神疾病、帕金森综合 症和药物依赖等各类精神疾病)的诊断、治疗 以及病理学研究提供科学依据。目前,国际上 fMRI 技术也广泛用于神经学和心理学的研 究,并在已作过大量研究的基础上逐步转入临 床应用阶段,中国各临床研究机构就此热点研 究课题也开展了与国际的广泛合作和学术户动, 国家基金在此方面的投入也是逐年攀升
功能磁共振是1990年贝尔实验室的科学家 Owaga发现的。血红蛋白分为含氧血红蛋白和 脱氧血红蛋白,脱氧血红蛋白是顺磁性物质, 含氧血红蛋白是逆磁性物质。顺磁性物质在主 磁场中受到磁化,在其周围产生一个微弱磁场, 影响主磁场的均匀性;而逆磁性物质对磁场没 有影响或影响很小。脑在进行认知任务加工活 动时,会消耗能量,消耗氧,血液中的含氧血 红蛋白脱氧成为脱氧血红蛋白,这时需要补充 含氧血红蛋白,局部血管膨胀,输入大量的含 氧血红蛋白,使得在局部区域内脱氧血红蛋白 的浓度降低,从而在采集的T2*加权像上表现为 微弱的信号升高,这种现象称为血氧含量对比 度(BOLD) 显像,现在一般功能磁共振成像 都是基于这种成像原理。
功能磁共振的广泛应用
功能磁共振成像方法目前已成为神经科学系 和心理学系的重要实验研究之一,涉及到脑高级 功能研究的各个领域:语言、记忆、视觉、听觉、 运动、知觉、情绪等。来自美国得克萨斯大学 圣·安东尼奥分校脑成像中心的小脑功能磁共振实 验,打破了150年来占统治地位的小脑只负责全身 运动的理论,实验证据表明小脑也对感觉和知觉 做出反应,这促使科学家开始了对小脑的再认识。
然后确定要扫描的主要部位,实验 刺激程序与扫描步开始。随着磁共振技 术发展,现在一般可以扫描全脑图像。 首先进行解剖定位像扫描。解剖定位像 是高分辨率的T1成像,图像大小可达 256× 256或512 ×512矩阵。能清晰显 示解剖结构。
随后是快速回波平面功能成像,因 为图像获取非常快,一般可以在1500ms时 间内采集36层全面图像,为了提高信噪比, 采集图像大小一般为64×64或128×128矩 阵。如果实验设计采用简单的“任务―控 制―任务―控制…”的实验范式,则具备 实时成像的扫描系统主控制计算机上可以 实时显示脑激活区。
功能磁共振基本试验方法
功能磁共振研究需要不同学科背景的人员在 一起共同完成,包括磁共振物理、影像放射学、 心理学实验设计、统计学、图像处理等。典型的 (fMRI) 实验中,受试者躺在磁共振病床上,磁 共振成像系统扫描的同时,刺激任务控制计算机 与磁共振扫描同步触发刺激程序,通过射频屏蔽 投影系统呈现给病人视觉刺激,或者通过耳机呈 现给病人听觉刺激,病人需要根据刺激程序的要 求做指定的任务,并用按键反馈响应,然后通过 MR扫描采集结构和功能原始数据,用专业的图像 后处理与统计分析软件进行计算,就可重建出人 脑的激活区并做各项定量分析研究。
美国生理心理学家斯佩里为了治疗 癫痫症,把联系大脑两半球的神经纤维 束通路胼胝体切断,发现虽然病人的症 状缓解,但带来了其他语言、记忆方面 的问题。自从科学心理学兴起后,科学 家还通过测量受试者的反应时间和正确 率推测脑的认知加工过程。
虽然对脑损伤病人的实验观察、损
毁、损毁方法和常规的行为心理学方法 使人们获得了关于脑的很多知识,但是 这些手段由于是有损伤的或者是把脑当 成一个黑箱子,不能进行在体的实时观 察,人类无法无创地对正常人的大脑进 行细致全面的分析和理解,神经科学家、 心理学家为寻求好的研究方法而煞费苦 心。
相关主题