当前位置:文档之家› 有限元基本原理与概念资料

有限元基本原理与概念资料


应用插值公式,可由 因此称为位移模式。
δ
e 求出位移
d。
这个插值公式表示了单元中位移的分布形式,
第六章 用有限单元法解平面问题
三角形单元

泰勒级数展开式中,低次幂项是最重要的。 所以三角形单元的位移模式,可取为:
u 1 2 x 3 y , ( a) v 4 5 x 6 y。
导出方法
• 型材挤压成形的分析。型材在挤 压成形的初期,容易产生形状扭 曲。
• 螺旋齿轮成形过程的分析
第六章 用有限单元法解平面问题
有限元应用实例
• 焊接残余应力分析(用Sysweld完 成)
导出方法
• 结构与焊缝布置
• 焊接过程的温度分布与轴向残余应力
第六章 用有限单元法解平面问题
有限元应用实例
首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。
2. FEM的特点
(1)具有通用性和灵活性。
第六章 用有限单元法解平面问题
简史
(2)对同一类问题,可以编制出通用程序, 应用计算机进行计算。 (3)只要适当加密网格,就可以达到工程 要求的精度。
3. FEM简史
FEM是上世纪中期才出现,并得到迅速发展 和广泛应用的一种数值解法。 1943年柯朗第一次提出了FEM的概念。
其中D为弹性矩阵,对于平面应力问题是:
1 E D μ 2 1 μ 0 μ 1 0 (c )
第六章 用有限单元法解平面问题
应用的方程
虚功方程:
(δ ) F
* T
y
Fiy ,vi*
i
Fjy , v* j
j

其中:
• δ*
A
(ε* )T σdxdyt
Fjx ,u* j
Fix ,ui*
第六章 用有限单元法解平面问题
简史
有限单元法的形成与发展

在寻找连续系统求解方法的过程中,工程师和数学家从两个不 同的路线得到了相同的结果,即有限元法。有限元法的形成可以 回顾到二十世纪 50年代,来源于固体力学中矩阵结构法的发展和 工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架 结构等标准离散系统与人为地分割成有限个分区后的连续系统在 结构上存在相似性。 • 1956 年 M.J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽 约举行的航空学会年会上介绍了一种新的计算方法,将矩阵位移 法推广到求解平面应力问题。他们把结构划分成一个个三角形和 矩形的“单元”,利用单元中近似位移函数,求得单元节点力与 节点位移关系的单元刚度矩阵。 • 1954-1955年,J.H.Argyris在航空工程杂志上发表了一组能量 原理和结构分析论文。 • 1960年,Clough在他的名为“ The finite element in plane stress analysis”的论文中首次提出了有限元(finite element) 这一术语。
(a) 桁架
(b) 深梁(连续体)
第六章 用有限单元法解平面问题
结构离散化
• 将连续体变换为离散化结构(图(c)): 即将连续体划分为有限多个、有限大小的单元, 并使这些单元仅在一些结点处用绞连结起来,构 成所谓‘离散化结构’。
(c)
深梁(离散化结构)
第六章 用有限单元法解平面问题
结构离散化
例如:将深梁划分为许多三角形单元,这 些单元仅在角点用铰连接起来。 • 图(c)与图( a)相比,两者都是离
• 淬火3.06 min 时的 温度分布
导出方法
• 淬火3.06 min 时的 马氏体分 布
第六章 用有限单元法解平面问题
§6-1
基本量和基本方程的 矩阵表示
采用矩阵表示,可使公式统一、简洁, 且便于编制程序。 本章无特别指明,均表示为平面应力 问题的公式。
第六章 用有限单元法解平面问题
基本物理量
第六章 用有限单元法解平面问题
简史

数学家们则发展了微分方程的近似解法,包括有限差分方法, 变分原理和加权余量法。 • 在1963年前后,经过 J.F.Besseling, R.J.Melosh, R.E.Jones, R.H.Gallaher, T.H.Pian(卞学磺)等许多人的工作,认识到有限 元法就是变分原理中 Ritz 近似法的一种变形,发展了用各种不同 变分原理导出的有限元计算公式。 • 1965年O.C.Zienkiewicz 和Y.K.Cheung (张佑启)发现只要能 写成变分形式的所有场问题,都可以用与固体力学有限元法的相 同步骤求解。 • 1969 年 B.A.Szabo 和 G.C.Lee 指 出 可 以 用 加 权 余 量 法 特 别 是 Galerkin法,导出标准的有限元过程来求解非结构问题。
基本物理量: 体力: f ( f x
f y )T 。
f y )T 。
T
面力: f ( f x
应变: 应力:
位移函数: d (u ( x, y ) , v( x, y )) 。
ε (ε x ε y γxy )T 。 σ (σ x σ y τ xy )T 。
F ( Fix Fiy Fjx Fjy )T 。

有限元法不仅能应用于结构分析,还能解决归结为场问题的 工程问题,从二十世纪六十年代中期以来,有限元法得到了巨大 的发展,为工程设计和优化提供了有力的工具。
第六章 用有限单元法解平面问题
简史
算法与有限元软件
• 从二十世纪 60年代中期以来,大量的理论研究不但拓展了有限 元法的应用领域,还开发了许多通用或专用的有限元分析软件。 • 理论研究的一个重要领域是计算方法的研究,主要有: • 大型线性方程组的解法,非线性问题的解法,动力问题计算方 法。 • 目前应用较多的通用有限元软件如下表所列: 软件名称 MSC/Nastra n MSC/Dytran MSC/Marc ANSYS ADINA ABAQUS 简介
第六章 用有限单元法解平面问题
导出方法

我国的力学工作者为有限元方法的初期发展做出了许多贡献, 其中比较著名的有:陈伯屏(结构矩阵方法),钱令希(余能原 理),钱伟长(广义变分原理),胡海昌(广义变分原理),冯 康(有限单元法理论)。遗憾的是,从1966年开始的近十年期间, 我国的研究工作受到阻碍。
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析;
3.整体分析。
第六章 用有限单元法解平面问题
结构离散化
1. 结构离散化--将连续体变换为离散化结构
• 结构力学研究的对象是离散化结构。如桁架, 各单元(杆件)之间除结点铰结外,没有其他联 系(图(a))。 弹力研究的对象,是连续体(图(b))。
散 化结构;区别是,桁架的单元是杆件,而 图(c)的单元是三角形块体(注意:三角 形单元内部仍是连续体)。
第六章 用有限单元法解平面问题
求解方法
2.单元分析
每个三角形单元仍然假定为连续的、均匀的、 各向同性的完全弹性体。因单元内部仍是连续体, 应按弹性力学方法进行分析。 取各结点位移 δi (ui v i )T (i 1,2,) 为基本未 知量。然后对每个单元,分别求出各物理量,并均 用 δ (i 1,2,) 来表示。 i
各单位移置到i 结点上的结点荷载 FLi , 其中 表示对围绕i 结点的单元求和;
e
F F
i e e
Li
,
(i 1,2,)
FLi 为已知值, Fi 是用结点位移表示的值。 通过求解联立方程,得出各结点位移值,从而求 出各单元的应变和应力。
第六章 用有限单元法解平面问题
求解方法
归纳起来,FEM分析的主要步骤:
解题的具体步骤 单元的划分
计算成果的整理 计算实例
第十一节 应用变分原理导出有限单元法的基本方程 例题 习题的提示与答案 教学参考资料
第六章 用有限单元法解平面问题
FEM
第六章
用有限单元法解平面问题
概述
1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。
第六章 用有限单元法解平面问题
概述 第一节
第二节
基本量及基本方程的矩阵表示
有限单元法的概念
第三节
第四节
单元的位移模式与解答的收敛性
单元的应变列阵和应力列阵
第五节
第六节
ቤተ መጻሕፍቲ ባይዱ
单元的结点力列阵与劲度矩阵
荷载向结点移置 单元的结点荷载列阵
第六章 用有限单元法解平面问题
第七节
结构的整体分析结点平衡方程组
第八节
第九节 第十节
--结点虚位移;
o
x
图6-1
ε * --对应的虚应变。 在FEM中,用结点的平衡方程代替平衡 微分方程,后者不再列出。
第六章 用有限单元法解平面问题
FEM的概念
§6-2
有限单元法的概念
• FEM的概念,可以简述为:采用有限自由度 的离散单元组合体模型去描述实际具有无限自由 度的考察体,是一种在力学模型上进行近似的数 值计算方法。 其理论基础是分片插值技术与变分原理。
求解方法
• (2)应用几何方程,由单元的位移函数d, e 求出单元的应变,表示为 ε Bδ 。
(3)应用物理方程,由单元的应变 ε , 求出单元的应力,表示为 σ Sδ e。 (4)应用虚功方程,由单元的应力 求出单元的结点力,表示为
σ

F (Fi F j Fm kδ 。
e e
第六章 用有限单元法解平面问题
求解方法
• Fi ( Fix Fiy T
--结点对单元的作用力,作用
于单元,称为结点力,以正标向为正。
相关主题