4 开关磁阻电机电驱动系统
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
相数与转矩、性能关系:
相数越大,转矩脉动越小,但成本越高,故常用三相、 四相,还有学者在研究两相、单相SRM。
低于三相的SRM 没有自起动能力!
电动汽车电驱动技术
常用开关磁阻电机方案结构
两相 4/2结构
四相 8/6结构
三相 6/4结构
六相 12/10结构
电动汽车电驱动技术
4.14 开关磁阻电机基本方程及性能
R1 i1 d1/dt t1 . . . im dm/dt
+ u1
K 耦合磁场 Te
J TL
-
+ um
Rm
-
SRM系统示意图
电动汽车电驱动技术
电路方程
第k相绕组的相电压平衡方程: d k
式中
dt uk ——第 k 相端电压; i k ——第 k 相电流;
Rk ——第 k 相电阻;
u k Rk i k
30
60 q
导通相控制 D A
B
C
D
电动汽车电驱动技术
SR电动机的矩角特性
两相起动时合成转矩波形
Te DA AB BC CD
O
30
60 q
导通相控制 A D
电动汽车电驱动技术
C B D
4.15 开关磁阻电动机的控制策略
*基速以下,电流斩波控制(CCC),输出恒转矩 可控量为:Us、 qon 、qoff 控制法1:固定qon ,qoff,通过电流斩波限制电流, 得到恒转矩 控制法2:固定qon ,qoff,由速度设定值和实际值 之差调制Us,进而改变转矩 *基速以上,角度位置控制(APC),输出恒功率
rotor
电动汽车电驱动技术
q2
基于理想线性模型的SR电动机分析
q = q3位置
stator
rotor
q3
电动汽车电驱动技术
基于理想线性模型的SR电动机分析
q = q4位置
stator
rotor
q4
电动汽车电驱动技术
基于理想线性模型的SR电动机分析
q = q6位置
stator
rotor
电动汽车电驱动技术
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
规律总结:
1、依次给A-C-B绕组通电,转子逆励磁顺序方向旋 转;
2、转矩方向与电流无关;
3、需要根据定、转子相对位置励磁。需要与控制器 一同使用; 4、通电一周期,转过一个转子极距角:tr=360/Nr;
5、步距角: qb=tr/m=360/(mNr)
电动汽车电驱动技术
4.13 开关磁阻电动机的相数与结构
N s 2km N r N s 2k )
相数与极数关系:
定子和转子齿槽数应为偶数。 定子和转子齿槽数不相等。 定子和转子齿槽数尽量接近。
电动汽车电驱动技术
4.13 开关磁阻电动机的相数与结构
开关磁阻电机常用方案 相数 定子极数 转子极数 步进角(度) 3 6 4 30 4 5 8 10 6 8 15 9 6 12 10 6 7 14 12 4.28 8 16 14 3.21 9 18 16 2.5
4.16 开关磁阻电动机功率变换器
两相斩波方式
斩波:V1关断,续流
电动汽车电驱动技术
换相:V2关断,V1导通
4.17 开关磁阻电动机控制系统实现
- US +
i* ASR - i ACR 逻辑控制 PWM 逻辑 “与” 放 大 驱 动 功率 变换器 SRM 位置 传感器
* + -
T* 控制模 + 式选择 qon , qoff
q
4.15 开关磁阻电动机的控制策略
APC运行时Tav与qon、qoff的关系
T
qon 增大
O
电动汽车电驱动技术
qoff
4.15 开关磁阻电动机的控制策略
控制方式的合理选择
电流斩波可控区
起动斩波 0 0
定角度斩波
变角度斩波
APC 控制 1 Cmax
n
Amin
2
可变角度运行区
电动汽车电驱动技术
q1
电动汽车电驱动技术
0
q2 q3 q0 q4
q5
基于理想线性模型的SR电动机分析
q = q1位置
stator
rotor
电动汽车电驱动技术
q1
基于理想线性模型的SR电动机分析
q = 0 位置
stator
rotor
电动汽车电驱动技术
q=0o
基于理想线性模型的SR电动机分析
q = q2位置
stator
SR电机绕组电感的分段线性解析式:
q1 q q 2 Lmin K (q q ) L q2 q q3 2 min L(q ) L q q q max 3 4 L K (q q ) q q q 4 4 5 max
K=(Lmax-Lmin)/(q3-q2)= (Lmax-Lmin)/s
电动汽车电驱动技术
12/8 极三相开关磁阻电动机
C B A A B C A
C
B A
电动汽车电驱动技术
B C
12/8 极三相开关磁阻电动机
C B A A B C A
C
B A
电动汽车电驱动技术
B C
12/8 极三相开关磁阻电动机
C B A A B C A
C
B A
电动汽车电驱动技术
B C
12/8 极三相开关磁阻电动机
q5
基于理想线性模型的SR电动机分析
q=0 q1(q5) q2 q3 q4
电动汽车电驱动技术
q1
0
定子磁极轴线与转子凹槽中心重合 转子凹槽前沿与定子磁极前沿相遇位置 转子磁极前沿与定子磁极前沿相遇位置 转子磁极前沿与定子磁极前沿重合位置 转子凹槽前沿与定子磁极后沿重合位置
q2 q3 q0 q4
q5
4.16 开关磁阻电动机功率变换器
• 功率变换器是直流电源和SRM的接口,起着将电 能分配到SRM绕组中的作用,同时接受控制器的
控制。
• 由于SRM遵循“最小磁阻原理”工作,因此只需
要单极性供电的功率变换器。功率变换器应能迅
速从电源接受电能,又能迅速向电源回馈能量。
电动汽车电驱动技术
4.16 开关磁阻电动机功率变换器
电动汽车电驱动技术
4.15 开关磁阻电动机的控制策略
设定电流上、下幅值的斩波图
i Imax
Imin
O
电动汽车电驱动技术
q
4.15 开关磁阻电动机的控制策略
设定电流上限和关断时间斩波图
i Imax
O
电动汽车电驱动技术
q
4.15 开关磁阻电动机的控制策略
PWM斩波调压控制的电流波形
i
O
电动汽车电驱动技术
特征:随定、转子磁极重叠的增加和减少,相电感 在Lmax 和Lmin之间线性地变化 。
电动汽车电驱动技术
SR电机转矩的分段线性解析式:
=L i
W’=i /2 = L i 2/2
0 2 KT i T 0 K i 2 T
电动汽车电驱动技术
0 q q2
q2 q q3 03 q q 4
电 源
功率变换器
SR 电动机
负 载
电流检测
位置检测
控制信号
控制器
SRD
电动汽车电驱动技术
开关磁阻电机结构
转子凸极 转子
定子凸极及绕组
定子
电动汽车电驱动技术
开关磁阻电机结构特点
双凸极结构 定子集中绕组 转子无绕组 转子无永磁体
电动汽车电驱动技术
4.12 开关磁阻电机工作原理
磁阻最小原理 磁通总要沿着磁阻 最小路径闭合,一 定形状的铁心在移 动到最小磁阻位置 时,必定使自己的 轴线与主磁场的轴 线重合。 气隙 N +
Wc (i,q ) Te q
磁共能的表达式为:
Wc (i,q )di
0
i
SR电机的平均电磁转矩Tav
mN r Tav 2
电动汽车电驱动技术
2 / N r
0
Te (i,q )dq
基于理想线性模型的SR电动机分析
线性模型:不计磁路饱和,假定绕组电感与电流无关, 此时电感只与转子位置有关。
k ——第 k 相磁链。
磁链方程:
式中
k Lk (q k , ik )ik
Lk ——第 k 相绕组电感;
q k ——转子角度;
电动汽车电驱动技术
电路方程
k dik k dq U k Rk ik ik dt q dt Lk dik Lk dq Rk ik Lk ik i dt ik q dt k
电阻压降 感应电动势 (电流变化) 运动电动势 (转子位置改变)