当前位置:文档之家› 砂带磨削技术及其应用

砂带磨削技术及其应用

砂带磨削技术及其应用砂带磨削技术应用新闻来源:中国研磨网发布日期:2008-2-10砂带磨削技术及其应用■特邀嘉宾/黄云黄智中国研磨:在工业发达国家的先进制造技术中,砂带磨削技术已经被广泛的应用,同样这个趋势在我国也逐渐显现。

您能简要谈一下砂带磨削在现代工业中的重要作用吗?黄云:砂带磨削是一种高效、经济、用途广泛,并有“万能磨削”之称的新型磨削工艺。

在现代工业中,砂带磨削技术已被当作是与砂轮磨削同等重要的一种不可缺少的加工方法。

在工业发达国家,砂带磨削应用已十分普遍,各种高精度、高效率、自动化程度很高的砂带磨床被广泛应用于航天、航空、舰船、汽车、冶金、化工及能源设备等制造行业,并成为国际上名牌机床公司竞争的一个领域。

中国研磨:在了解砂带磨削技术应用之前,可否请您讲解一些砂带磨削原理方面的知识,比如砂带磨削方法的理论知识和单颗磨粒在磨削过程当中的注意问题?黄云:第一,砂带磨削方法。

砂带磨削是砂带这一特殊形式的涂附磨具,借助于张紧机构使之张紧,和驱动轮使之高速运动,并在一定压力作用下,使砂带与工件表面接触以实现磨削加工的整个过程。

广义地讲,砂带磨削与砂轮磨削同样都是高速运动的“微刃切削刀具”――磨粒的微量切削而形成的累积效应,因而其磨削机理大致上也是相同的。

但由于砂带本身的构成特点和使用方式不同,使砂带磨削不论是在磨削加工机理方面,还是其综合磨削性能方面都有别于砂轮磨削,这主要表现在:1)砂轮磨削是刚性接触磨削,而砂带磨削则是弹性接触磨削,而且即使是在使用无弹性的钢制接触轮的情况时也是如此,因为组成砂带的基材、粘结剂都具有一定的弹性,更何况大多数情况下都采用有弹性的橡胶作接触轮。

正因为如此,砂带磨削除了具有砂轮同样的滑擦、耕犁和切削作用外,还有磨粒对工件表面的挤压作用,并使之产生塑性变形、冷硬层变化和表层撕裂,以及由于摩擦使接触点温度升高,而引起的热塑性流动等综合作用。

所以,从这点来看,砂带磨削同时具有磨削、研磨和抛光的多重作用。

而这也正是砂带磨削表面质量好的原因。

另一方面,由于砂带的这种弹性磨削特点,还使砂带在磨削区域内与工件接触的长度比砂轮大,同时参加磨削的磨粒数目多,单颗磨粒所受载荷小,且均匀,磨粒破损小。

而使整个砂带的磨耗比(磨削材料去除量与砂带磨粒消耗量之比称为磨削比,而磨削比的倒数就称为磨耗比)比砂轮要小得多。

2)砂轮的磨粒在磨削表面上的分布是杂乱无章的,很不规则,实际磨削时,磨粒都是以较大的负前角、小后角甚至负后角的刃口进行切削,切削条件很恶劣。

砂带则不同,砂带的磨料是专门制造的,磨粒的几何形状常呈长三角体,并多采用静电植砂等一系列先进工艺制作,磨粒的大小和分布均匀,等高性好,并且是尖刃朝外的形式植于砂带基材表面上,露出复胶层的部分较多。

因而,砂带的磨粒比砂轮的磨粒锋利,切削条件较好,磨削时材料变形小,切除率高,磨削力和随之产生的磨削热小,磨削温度低。

3)砂轮磨粒间充满了结合剂,容屑空间很小。

而砂带磨粒间容屑空间一般至少比砂轮大10倍,加之磨粒等高性好,因而砂带磨粒的有效切削面积大,切削能力比砂轮强,并且磨屑可随时直接带走,很少残留在砂带表面造成堵塞,而不会由此增加摩擦发热,磨削区域温度低。

4)砂带的周长从设计角度来看,可以远远超过砂轮的周长,这就使得砂带在磨削时既有良好的散热区域,又可以通过砂带的悬空部分〈即不与接触轮、张紧轮、压磨板等接触的部分〉在运行时的振荡,将粘在砂带上的磨屑自然抖掉,进一步减少磨粒被填塞的现象,从而减少摩擦发热,这也是砂带磨削温度低的一个原因。

由此可见,砂带磨削的加工机理是同于砂轮磨削又有别于砂轮磨削的一种更为复杂的形式,这是分析和了解砂带磨削机理的理论基础和根本出发点。

第二,单颗磨粒的磨削过程。

砂带磨削是由大量的垂直定向排列在砂带表面的磨粒切刃来完成的。

每个磨粒均可近似看作一把微型刀具,因而研究这些单颗磨粒的磨削过程是研究整个砂带磨削的基础。

砂带表面的磨粒从微观来看,就象一种刀尖为圆弧,刃角为钝角或钝圆的切削刀具。

其圆弧半径由几微米到几十微米,大小与磨粒的材质和粒度有关。

由于磨粒的这种几何特性,在磨削时,切削深度小(切屑厚度薄),一般在O.005~0.05mm左右。

所以绝大多数磨粒切削刃是在大负前角条件下对工件进行切削。

这与机床刀具切削过程一样,工件材料在磨粒切削刃的挤压、摩擦作用下产生变形转为切屑,形成加工表面。

砂带的弹性接触特征使磨粒切削刃的切削过程大致可以分为挤压、滑擦、耕犁、切削四个阶段,如图所示。

最初磨粒挤入工件,由于切入深度小于磨粒刃尖圆弧半径,形成很大的负前角,工件表面仅发生弹性变形。

随着切入深度增大,磨粒对工件表面的压力逐渐增大,开始压入工件,工件表面由弹性变形开始过度到塑性变形。

磨粒继续挤压,摩擦加剧,热应力剧增,在工件表面耕犁出沟痕,沟痕两边金属滑移隆起突出。

工件材料塑性变形不断增加。

当切入深度继续增加时,被推挤的金属层明显滑移。

推挤压力超过工件材料强度后形成切屑从前刀面流出,切离工件表面。

加工材料不间,磨粒切削过程四个阶段在整个磨削过程中所占比例也不一样。

磨削过程是磨粒切削刃切削金属的过程,它同机床刀具切削一样,被磨削金属也经历了弹性变形、塑性变形、切削形成等过程,并有大量的磨削力和磨削热产生。

磨削过程中由于磨粒形状及分布状态不一,砂带表面的磨粒存在实际参加磨削的有效磨粒少于其磨粒总数的情况。

因而同一时间内磨粒对金属的挤压、滑擦、耕犁和切削作用的大小不同,所得到的效果亦不同。

甚至同一颗磨粒的不同部位以及同一部位在不同的加工时间里所起的作用也不同,可见砂带的磨削是十分复杂的。

特别是磨粒切刃的负前角切削过程,切削条件很差,各阶段的剧烈挤压使磨削表面产生严重的塑性变形,而且大量塑性变形的金属不是成为切屑流出,而是仍保留在已加工表面,所以加工表面的硬化现象严重,残余应力较大。

由于磨粒的高速运动,加之磨粒切刃较钝,在磨削区造成较大的摩擦和弹性、塑性变形,磨削过程中会有较大的热量产生,导致磨削区工件表面温度上升,将引起工件表面层发生变化。

特别是在砂带磨粒磨损严重时,磨削摩擦加剧,产生大量的磨削热,使工件表层温度急剧上升,导致表层金属发生组织变化〈如烧伤、裂纹、热应力等〉。

这也正是为什么使用砂带磨削有时仍会烧伤工件表面的一个原因。

从微型刀具――磨粒的几何结构看,其负前角大,后角小,特别是砂带弹性磨削这一特点使磨粒在磨削时对工件产生的挤压作用很强,远远大于切屑分离时的拉伸作用。

在磨削垂直方向上,磨粒两侧的金属都受到较强烈的挤压,所以导致较大的残余压缩应力形成。

此外,工件表面在磨粒挤压,滑擦,耕犁等综合作用下,产生的塑性形变会引起晶格歪曲、畸变、金属密度降低、比容增加,也会形成表面残余压应力,下层形成拉应力。

所以综合以上分析可知,砂带在磨削时,磨削力及塑变因素引起工件表面常常呈残余压应力。

这对一些可靠性要求很高的零件加工(如航空发动机叶片、发电机转轴等)是极其重要的。

所以,归纳起来,砂带磨削的机理可以这样总结:由于砂带表面磨粒分布均匀、等高性好、尖刃外露、切刃锋利,切削条件比砂轮磨粒好,使得砂带磨削过程中,磨粒的耕犁和切削作用大,因而材料切除率大、效率高。

由于砂带的弹性接触状态,使得砂带磨粒对工件表面材料的挤压和滑擦作用大,因而磨粒有很强的研磨、抛光作用,磨削表面质量好。

由于砂带磨粒容屑空间大,磨屑堵塞造成摩擦加剧的可能性减少,由此产生的热量少;由于砂带与工件接触弧长较大,单颗磨粒受力较小而且均匀;砂带磨粒切刃锋利,磨削时材料变形小,所产生的热量相应也小,再加上砂带周长长,散热性好,因而砂带在整个磨削过程中产生的磨削力和产生的磨削热相对于砂轮来说就低得多,磨削温度低,故有“冷态”磨削之称。

中国研磨:随着砂带磨削技术的飞速发展,它在制造加工领域正扮演着越来越重要的角色。

那么在砂带的实际磨削应用中哪些技术是应该了解和注意的?黄智:目前砂带磨削技术在世界先进工业国已经得到了广泛的应用,就拥有量来说,已逐步接近砂轮磨床,其产值比:美国49:51,德国45:55,日本25:75,英国、瑞士等国的发展也很快。

同时砂带磨削技术在国内许多单位也得到了较广泛的推广应用,解决了很多生产实际问题。

砂带优越的磨削性能和灵活的工艺特性决定了它具有极其广泛的应用范围,从日常生活到工业生产的各行各业,砂带磨削几乎遍及所有领域。

其应用形式之多样,范围之广泛是其它任何一种加工方法所不能比拟的。

具体表现在:1、砂带磨削几乎能磨削一切工程材料。

除了砂轮磨削能加工的材料外,其还可以加工诸如铜、铝等有色金属和木材、皮革、塑料等非金属软材料。

特别是砂带磨削的"冷态" 磨削效应使之在加工耐热难磨削材料时更显出独特的优势,因此也被国外工业界称为“万能磨削”的一种高效精密加工方法。

2、砂带磨削能够加工表面质量及精度要求高的各种形状的工件。

砂带磨削不但可以加工常见的平面、内外圆表面的工件,还能以极高的效率加工表面质量及精度要求都较高的大型或异型件。

例如:(1)大面积板材的抛磨加工。

砂轮的宽度最大仅1000mm,而砂带可以做到2500mm 以上。

实际使用中砂带磨削常见的加工宽度为50-2000mm,加工厚度0.4-150mm。

其生产率高达1000㎡/h。

这种宽砂带磨削可广泛用于钢板、不锈钢板、硅钢片、铝板、铜板、刨花板、胶合板、中密度纤维板、皮革、绝缘板、陶瓷板以及宇航器具、舰船和核物理研究装置上使用的各种高精度低粗糙度的大型板材等的表面加工。

发动机变速箱体断面等断续平面的精密加工也可以用宽砂带磨削一次成形,并能保证比传统铣、刨加工的表面有更好的密封性。

(2)金属带材或线材的连续抛磨加工。

由于宽砂带磨削的发展,使薄型带材在整个宽度上都有相同的磨削条件,不至于发生局部受力过大,产生应力变形,故冷扎钢带、铜、铝带及其它合金带材等的表面都适合于用砂带连续抛磨。

其加工宽度为600-2100mm,加工厚度0.1-2.2mm,表面粗糙度值Ra3.2-0.1μm,带材运行速度为3-80m/min。

行星式砂带磨削为不锈钢或其它材料的成卷线材的抛磨提供了一种十分有效和经济的加工方法。

已知的线材抛磨直径在0.8-20mm。

连续运行速度6-150m/min。

(3)长径比很大的工件内、外圆抛磨。

现代工业中的各种大型的、长径比很大的轴类工件的外圆和管类工件的内圆表面的加工利用砂带磨削十分方便。

一般可在大型标准设备上增加一个砂带磨削装置便可实现。

批量大的则可采用专用的砂带磨床。

如大型发电机转子、轧辊、造纸烘缸等工件的外圆和汽缸、石油管道、压力容器等工件的内圆表面加工。

(4)复杂异型工件的抛磨。

曲面工件的成型磨削,难度较大。

然而利用砂带的柔性可方便地加工各种复杂曲面,曲率半径仅为3mm的内圆角,砂带亦可对其进行抛磨。

相关主题