液相芯片检测技术
• 激素水平的检测
11
液相芯片的应用
• 国内学者朱海红等运用液相芯片技术对腮腺炎病毒、呼吸道合胞病毒、 流感病毒等56种病毒进行高通量检测取得了良好效果。
• Biagini等建立了液相蛋白芯片方法,可以同时检测血清中23种血清型的 肺炎球菌荚膜多糖抗体。
• Bellisario等利用液相芯片技术同时测定新生儿血清促甲状腺素和甲状腺 素T4水平以早期诊断先天性甲状腺功能减退,取得了良好效果。
流式细胞仪技术
μl级样品,2-5个数量级,pg
4
液相芯片技术的原理
• 液相芯片检测小分子蛋白原理报告荧光值随着样品抗原的增加而 Nhomakorabea少5
液相芯片技术的原理
报告激光 532nm
流动池
光电倍增管
分类激光 635nm
6
液相芯片技术的原理
• 检测仪器
7
液相芯片技术的原理
• 检测数据
8
液相芯片技术的优势
12
液相芯片技术的不足与展望
• 液相芯片技术存在着一些缺陷,如抗体对的匹配、交联条 件的最优化、多种反应混合交叉反应的避免、反应条件的 优化及数据的处理等,仍有待进一步提高。
• 随着科学技术的不断深入、计算机分析软件功能的日益强 大和实践操作经验的不断丰富,这些问题必将得以解决。 液相芯片技术这一新技术将会更广泛地应用于临床检测, 在临床疾病的诊断中发挥重要作用。
迄今为止10年时间,全球已有数百套基于xMAP 技术的 检测平台用于免疫学、蛋白质、核酸检测、基因研究等领域, 该技术已成为一种新的蛋白质组学和基因组学研究工具,也 是最早通过美国食品与药品管理局( FDA)认证的可用于临床 诊断的生物芯片技术。
3
液相芯片技术的原理
荧光微球(xMAP技术)
微球耦联靶分子 酶底物-受体、抗原-抗体 高通量、灵活组合
• 高通量
液相芯片可同时对一份标本中的多种不同目的分子进行定性定量分析;
灵敏性高
液相芯片最低的检测浓度可达到2 pg/mL, 线形范围宽,可达4个数量级;
• 灵活性好
既适合做核酸分析又可做蛋白分析;
耗时短
35~60 min即可对96个不同样本做检测分析;
• 成本较低
液相芯片的检测试剂、消耗品和检测仪器并不比现有的其他方法昂贵。
1
目录
• 液相芯片技术简介 • 液相芯片技术的技术原理 • 液相芯片技术的优势 • 液相芯片技术的临床应用 • 液相芯片技术的不足与展望
2
液相芯片技术
微 球 体 悬 浮 芯 片 (suspensionarray, liquid chip) , 是 基 于 xMAP (flexible Multi-AnalyteProfiling) 技术的新型生物芯片技 术平台,它是在不同荧光编码的微球上进行抗原-抗体、酶-底 物、配体-受体的结合反应及核酸杂交反应,通过红、绿两束 激光分别检测微球编码和报告荧光来达到定性和定量的目的。
13
14
9
液相芯片与固相芯片的比较
10
液相芯片的应用
• 液相基因芯片
将预先人工合成的寡核苷酸探针共价连接于微珠表面构成。液相 基因芯片除具有一般固相基因芯片的功能如核苷酸测序、单核苷酸多 态性分析、基因作图等,还具有精确的同时定性、定量分析特征。
• 液相蛋白芯片
液相蛋白芯片临床检测包括: ①抗原抗体定量定性检测;②细胞因子 检测。