1.聚合物基复合材料(PMC)的组成(1) 基体热固性基体(thermosetting matrix):i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆iii) 制备过程伴有复杂化学反应热塑性基体(thermoplastic matrix):i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象(2) 增强体主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。
2.复合材料的结构(structure of composites)①无规分散(弥散)增强结构(含颗粒、晶须、短纤维)(randomly oriented)②连续长纤维单向增强结构(单向板)(aligned)③层合(板)结构(二维织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结构(sandwich structure)⑥混杂结构(hybrid structure)3.复合材料的界面1)界面现象:①表面吸附作用与浸润②扩散与粘结(含界面互穿网络结构)③界面上分子间相互作用力(范氏力和化学键合力)2). 复合材料的界面形成过程PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。
(1)第一阶段:增强体表面预处理或改性阶段。
i) 界面设计与控制的重要手段ii) 改性层成为最终界面层的重要组成部分iii) 为第二阶段作准备(2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。
化学结合可看作是一种特殊的浸润过程ii) 界面形成与发展的关键阶段(3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应i) 界面的固定(亚稳态、非平衡态)ii) 界面的稳定(稳态、平衡态)在复合材料界面形成过程中涉及:i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程3)复合材料界面结构与性能特点i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。
界面区至少包括:基体表面层、增强体表面层、基体/增强体界面层三个部分ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征iii) 界面的比表面积或界面相的体积分数很大(尤其是纳米复合材料)界面效应显著:复合材料复合效应产生的根源iv) 界面缺陷形式多样(包括残余应力)(residual stress),对复合材料性能影响十分敏感4)在复合材料未受外力时,界面上仍存在应力或应力分布,这就是“残余应力”。
残余应力来源:①增强相与基体相热膨胀系数的不匹配②相与相之间的弹性系数不匹配,相内的应力分布不均③成型过程中,由高温-室温、由化学和物理变化引起的各组元体积收缩的不同,如:基体固化、聚集态转变、晶相转变等④层合板中,由铺层方向不同所带来的层间残余应力(层合板的翘曲)⑤流变过程中,组元间的塑性变形差异引起的流变残余应力5). 复合材料界面破坏机制(interface failure of composites)在力场或外界环境如(1)破坏的来源和缺陷按本身的规律发展,并消散能量(2)5种破坏形式: i) 基体断裂ii) 纤维断裂iii) 纤维脱粘iv)纤维拔出(摩擦功)v) 裂纹扩展与偏转复合材料的破坏机制则是上述5种基本破坏形式的组合与综合体现的结果。
6). 复合材料的界面理论(The Interface Theories)(1)界面设计与控制的概念(design and control of interlayer)界面具有双重功能①传递应力,需要一定界面结合强度,但不是愈高愈好②界面破坏。
界面结合适度,界面破坏形式愈丰富,能量耗散愈多。
高的界面粘接强度,不一定带来材料整体的高强度和高韧性。
在脆性纤维-脆性基体复合体系中,强的界面结合往往导致各组元相中及相间的应力集中和脆性断裂、破坏形式单一,不涉及界面破坏,其能量耗散仅限于产生新的断裂表面。
材料易突然失效或发生灾难性破坏。
弱的界面结合强度有时能带来材料整体高的力学强度和韧性。
弱的界面结合可以发生多种界面破坏形式(如纤维拔出、脱粘、应力再分配等),从而消耗大量的外界功,提高材料的强度和韧性,避免脆性断裂或灾难性破坏。
因此,要求界面:①适宜的粘接强度②最佳的界面结构和状态③与界面相联系的理想的微观破坏机制这就是所谓界面设计与界面控制的基本概念4.增强材料概述1)增强材料是复合材料的主要组成部分,性能优越。
作用:提高基体树脂的强度、硬度、模量、耐热及耐磨性、减少成型收缩率。
2)增强材料分类:无机增强材料:Gf、Cf、Bf、晶须、石棉、金属纤维、(Al2O3)f、SiC)f有机增强材料:Kevlar纤维、聚苯并双噁唑纤维、UHMPE纤维、聚酯纤维、棉、麻、纸等。
3) 聚合物基复合材料用增强材料所具备的特征1.能明显提高基体所需的某种性能(如高比强度、比模量、尺寸稳定性、耐热性等)2.具有良好的化学稳定性3.与树脂有良好的浸润性,并能形成良好界面粘结4.价廉5. Gf:玻璃纤维即纤维状的玻璃,结构与玻璃相同,是目前用量最大的一类纤维。
价格便宜,拉伸强度高,防火防霉。
在纤维增强塑料(FRP)中的用量一般为20-80%,缺点是脆性大、不耐磨,易受机械损伤。
1>影响玻璃纤维强度的因素i)直径越细,强度越高ii)存放时间越长,强度越低(老化现象),原因是玻纤表面的微裂纹易吸附各种气体、水蒸气、易发生表面反应。
老化程度取决于玻纤对大气中水分等的稳定性。
iii>化学组成:含K2O、PbO成分多的玻璃纤维的强度较低,见P11表2.24iV).负荷时间:随着玻璃纤维的负荷时间的增加,其拉伸强度降低,环境湿度较高时,更加明显,原因可能是吸附在微裂纹中的水分,在外力作用下,使微裂纹扩展加快,从而导致强度降低。
2>物理性能(1).力学性能• 抗拉强度:比块玻璃高一个数量级;直径d↘, 强度↗;长度↗,强度↘。
• 弹性模量:与铝相当,为钢的1/3倍。
因密度低(~2.5),比模量高。
• 断裂延伸率:低(~3% )(2).热学性能• 导热系数:比块玻璃低1~2个数量级• 耐热性:普通Na-Ca-Si玻纤< 500℃;耐热玻纤(石英,高硅氧) <1200℃(3). 电性能碱玻璃电绝缘性差,随温度、湿度↗,绝缘性↘。
无碱玻璃电绝缘性好。
(4). 耐蚀性纤维比表面积大,化学稳定性差。
• 无碱玻璃耐水性好。
• 中碱玻璃耐酸性好。
• 无碱和中碱玻纤耐碱性相近。
(3)化学性能i) 玻纤直径越小,由于玻璃纤维的比表面积大大增加,使得玻璃纤维受化学介质腐蚀的面积比玻璃大很多,耐化学介质性能越弱ii)玻纤化学组成影响其化学性能。
SiO2含量越高,玻纤的化学稳定性越好;碱金属氧化物含量越高,玻纤化学稳定性降低。
增加氧化硅、氧化铝、氧化锆、氧化钛含量,能提高玻纤的耐酸性;增加氧化硅、氧化钙、氧化锆、氧化锌含量,能提高玻纤的耐碱性能;增加氧化铝、氧化锆、氧化钛含量,可以提高玻纤的耐水性能。
(4)Gf的生产工艺※浸润剂作用:使纤维柔顺,粘合集束,润滑耐磨,消除静电,防止磨损,保护纤维免受大气、水分的侵害。
常用的有:非活性浸润剂:淀粉石蜡乳液,在复合前须清除活性浸润剂:聚醋酸乙烯酯,不必清除改性有机硅类,不必清除2>池窑法——操作稳定性好、断头飞丝少、单位能耗低玻璃原料直接加入窑内熔融、澄清、匀化后,经漏丝板抽丝,制成各种玻纤制品。
(5)玻璃纤维及其织物的表面处理处理原因:玻纤表面光滑,不利于与基体相粘结比表面积大,易吸水影响稳定性较脆、不耐磨,纤维之间摩擦系数大,不利于纺织处理目的:使玻纤与基体形成良好的界面粘结,利于纺织(集束、润滑、除静电)处理意义:i)是提高玻璃钢性能的重要途径之一ii)改善了玻纤及其织物的性能,增强了玻纤与基体的界面粘结iii)改善了玻纤的界面状态(防止水分子及其它有害物质侵入、减少或消除界面弱点)玻纤表面处理分为:单丝表面处理:涂覆一层浸润剂(保护膜),目的是润滑,以保护纤维免受大气、水分的侵害。
常用淀粉和石蜡乳剂处理。
此类处理剂在纤维及其织物的表面处理前应除去(洗涤法、烧灼法)纤维及其织物的表面处理:采用偶联剂,目的是使纤维和织物与树脂良好粘结目前所用的偶联剂主要有三大类:硅烷类.有机铬类.钛酸酯类6.表面处理剂1>、硅烷偶联剂——品种多,效果显著通式:RnSiX4-nR:有机基团,含有可与树脂作用形成化学键的活性基团,如:碳-碳双键、环氧基团、胺基、硫氢基等。
X:易水解基团。
如:甲氧基、乙氧基等。
水解后与玻纤表面作用。
X的种类和数量对偶联剂的水解、缩合速度、与玻纤的偶联效果、纤维与界面的结合特性影响很大。
偶合机理:i) 分子间脱水,形成-Si-O-Si- 在玻纤表面形成copolymer薄膜层,保护玻纤表面ii) 与玻纤表面作用,形成-Si-O-Si- 使偶联剂与玻纤表面牢固结合,在玻纤表面形成-Si-R有机硅单分子层、多分子层iii) 此外还有物理吸附引起的沉淀层iv) R与树脂作用机理R不同,与之反应的树脂基体的活性基团不同,如R为CH2=CH—的硅烷偶联剂对丙烯酸树脂有特效2>、有机铬类偶联剂i)最常用的是Volan (沃兰),R为ii) 偶联机理与硅烷偶联剂相同3>、新品种偶联剂i)耐高温硅烷偶联剂(用于耐高温树脂如聚苯并咪唑PBI、聚酰亚胺PI)——耐高温偶联剂的硅原子上连接的是氰苯基、氯苯基、甲苯基、胺苯基、羧酸苯基,而非普通硅烷偶联剂的脂肪族官能团。
ii)过氧化物类偶联剂——偶联作用是通过过氧化物的热裂解而非基团水解。
偶联作用不局限于纤维增强塑料,而是适应于一大类相似或不相似物质间的偶联。
7.玻纤的表面处理方法:I>后处理法——普遍使用——凡是在制备玻纤时使用了纺织型浸润剂的玻纤制品,在用于制作玻璃钢之前,都采用此法玻纤或织物洗涤(或烧灼)以除去纺织型浸润剂处理剂溶液浸渍(内含偶联剂)水洗烘干纤维或织物被覆一层偶联剂ii>前处理法在浸润剂中加入偶联剂,使之既能满足拉丝、退并、纺织各道工序的要求,又不妨碍树脂基体对玻纤的浸润与粘结。