当前位置:
文档之家› 航天器动力学03-轨道要素_684006699
航天器动力学03-轨道要素_684006699
X
i O f
r
S Y
e t
N
讨论:奇异情况
2011年9月23日星期五
真近点角
Page 9
真近点角
p r 1 e cos( )
S
b
p
O
r
根据几何关系有
a (1 e ) r 1 e cos f
2
ae a
f
N
e
其中 f 是真近点角:航天器相对于椭圆长轴的极角。 真近点角 f 的变化就是航天器的轨道角速度。
f 2
e 1 H tanh ,得 e 1 2
esinhH H n t
E、H:新的角度量
2011年9月23日星期五
椭圆情况
Page 12
时间积分:椭圆为例
t
f 0
r df h
2
y
x ae
a
2
2
椭圆直角坐标方程: 参数化方程:
y 2 1 2 a 1 e
E O f
S
偏近点角 E :椭圆轨道存 在内、外接圆,航天器在 内、外接圆上的投影点与 椭圆中心对应的夹角。如 图。 f 1 e E tan tan 2 1 e 2
2011年9月23日星期五
角度关系
Page 14
各角度的关系
M
a
3
(t )
开普勒方程
求微分方程 与求代数方 程的比较?
M E e sin E
2011年9月23日星期五
Page 19
作业
1. 证明椭圆参数方程中的参数 E满足图示几何关系,并推导 cosE和sinE与f的关系式,以 及cosf和sinf与E的关系式
x a cos E e , y a 1 e 2 sin E
ab
1 h T 2
h p p a (1 e ) b 1 e
2 2
T 2
a3
2 因此轨道平均角速度 n 为: n T
2011年9月23日星期五
a3 开普勒第三定律 2 T 4 2
a
3
时间积分
Page 11
时间积分
时间积分:t 圆轨道:…… 椭圆轨道:作变量代换 tan 2
因此,利用轨道根数可以很直观地 表示航天器的运动,并且只需求解 代数方程。
开普勒方程Page 15
求解开普勒方程几种方法
M E e sin E
设:M=2; e=0.4
10 8 (1)直接求解非线性方程 (Matlab中有求解函数fsolve,solve) 6 4
y1 E
(2)几何法求解
p p 2 r h r2 f p a 1 e 1 e cos f 2a
h h e sin f rf (1 e cos f ) r r p p
e 1
2 h 2
2
n
a
3
T 2
a3
M n t
数值迭代
Page 16
(3)数值迭代
E M e sin E
2.4
2.3
1. 令E1=M,按下式迭代,直到En与 En-1之差小于给定误差
2.2
En 1 M e sin En
2.1
E的迭代值
2.00000000000000 2.36371897073027 2.28070648114268 2.30336817494395 2.29738274094345 2.29897858923242 2.29855414582844 2.29866710814390 2.29863704935453 2.29864504824203 2.29864291969958 2.29864348611684 2.29864333539012 2.29864337549933 2.29864336482605 2.29864336766626 2.29864336691047
2
0
5
10
15
20
迭代10次,误差为10-6
迭代20次,误差为10-11
牛顿法
Page 17
2011年9月23日星期五
(3)数值迭代
E M e sin E
2.牛顿法:令E1=M ,代入下式迭代
M En e sin En En 1 En 1 e cos En
E的迭代值
2.000000000000000 2.311814691712278 2.298663603893595 2.298643367117615 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317 2.298643367069317
2011年9月23日星期五
坐标系
Page 6
地心赤道惯性坐标系
为了定义轨道根数,有必要先介绍地心赤道惯性坐标系。 定义地心赤道惯性坐标系OXYZ:O在地球中心,XY平面为地 球赤道面,X轴沿地球赤道面与黄道面的交线,指向春分点 (白羊座),Z轴为地球自转轴,指向北极。
黄道面
太 阳
春分点方向:春分时刻地心与日 心的连线
M E e sin E
cos E e cos f 1 e cos E
见章仁为“卫星轨道姿态 动力学与控制”,p5-7
根据上式可由平近点角 M 迭代求出偏近点角 E 、 再求出真近点角 f。 从而确定航天器的运动。
a (1 e 2 ) r 1 e cos f
2011年9月23日星期五
2011年9月23日星期五
轨道要素
Page 4
轨道要素
另一方面,我们已知航天器在某一个平面内的运动 轨迹为圆锥曲线,如果已知: (1)轨道平面在空间惯性坐标系中的方位; (2)圆锥曲线的方向(长半轴方向); (3)在某一时刻航天器在轨道的某一个点上, 则可以通过求解代数方程确定任一时刻航天器位置。
2011年9月23日星期五
Z h i O f r S Y
e t
X N
要素意义
Page 8
轨道要素的意义
轨道倾角 i 和升交点赤经Ω 表示了轨道平面在空间 中的方位;近地点幅角ω表示了轨道的长轴方向; 半通径 p 和偏心率 e 表示 了轨道的大小及形状;
h Z
过近地点时刻τ 表示了 航天器在轨道中的相对 位置。 这六个量完全确定了航 天器的运动状况。
1 e2 df dE 1 e cos E
2011年9月23日星期五
f
0
r2 df h
a3
1 e cos E dE
0
E
平偏近点角Page 13
平近点角与偏近点角
平近点角M :航天器从近地 点开始按平均角速度 n 转过 的角度。
M n(t )
a
3
(t )
f 1 e E tan 1 e 2
f 0
r2 df h
p3
f
0
df (1 e cos f ) 2
,得 E e sin E n t
f 2 3 f 2 t 抛物线轨道: 2 tan tan 3 2 3 2 q
双曲线轨道:作变量代换
tan
2 0
y2 M e sin E
0 2 4 6 8 10
E M e sin E
设
2.299 2.2989 2.2988
y1 E y2 M e sin E 两条曲线的交线就是解。
2011年9月23日星期五
2.2987 2.2986 2.2985 2.2984 2.2983 2.2985 2.2986 2.2987 2.2988
任课教师:蒋方华 助理研究员 办 公 室:逸夫技科楼1211室,62795926 email: jiangfh04@
2011年9月23日星期五
个人简介
Page 1
本人简介
• 学习和工作经历
2000.9-2004.7 2004.9-2009.7 2009.7-2011.6 2011.6-??? 清华大学工程力学系本科 清华大学航天航空学院博士研究生 清华大学航天航空学院博士后 清华大学航天航空学院教师
a 1 e 2 cos f 1 e cos f
2
r S O
x
极坐标方程化为直角坐标方程:
2
x a cos E e , y a 1 e sin E
+
x
,y
a 1 e 2 sin f 1 e cos f
r a 1 e cos E
cos E ,sin E cos f ,sin f
迭代误差
0.311814691712278 -0.013151087818683 -0.000020236775980 -0.000000000048298 0 0 0 0 0 0 0 0 0 0 0 0
迭代3次,误差为10-5 迭代4次,误差为10-11
2011年9月23日星期五
Page 18
重要的公式
• 研究领域
航天器编队飞行(博士课题) 高精推力轨道优化(博士后期间)