清 华 大 学 实 验 报 告系别:机械工程系 班号:72班 姓名:车德梦 (同组姓名: ) 作实验日期 2008年 11月 5日 教师评定:实验3.3 直流电桥测电阻一、实验目的(1)了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法;(2)单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据; (3)了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。
(4)数字温度计的组装方法及其原理。
二、实验原理1. 惠斯通电桥测电阻 惠斯通电桥(单电桥)是最常用的直流电桥,如图是它的电路原理图。
图中1R 、2R 和R 是已知阻值的标准电阻,它们和被测电阻x R 连成一个四边形,每一条边称作电桥的一个臂。
对角A 和C 之间接电源E ;对角B 和D 之间接有检流计G ,它像桥一样。
若调节R 使检流计中电流为零,桥两端的B 点和D 点点位相等,电桥达到平衡,这时可得x R I R I 21=,1122I R I R =两式相除可得R R R R x 12=只要检流计足够灵敏,等式就能相当好地成立,被测电阻值x R 可以仅从三个标准电阻的值来求得,而与电源电压无关。
这一过程相当于把x R 和标准电阻相比较,因而测量的准确度较高。
单电桥的实际线路如图所示:将2R 和1R 做成比值为C 的比率臂,则被测电阻为CR R x =其中12R R C =,共分7个档,0.001~1000,R 为测量臂,由4个十进位的电阻盘组成。
图中电阻单位为Ω。
2. 铜丝电阻温度系数任何物体的电阻都与温度有关,多数金属的电阻随文的升高而增大,有如下关系式:)1(0t R R R t α+=式中t R 、0R 分别是t 、0℃时金属丝的电阻值;R α是电阻温度系数,单位是(℃-1)。
严格地说,R α一般与温度有关,但对本实验所用的纯铜丝材料来说,在-50℃~100℃的范围内R α的变化很小,可当作常数,即t R 与t 呈线性关系。
于是tR R R t R 00-=α 利用金属电阻随温度变化的性质,可制成电阻温度计来测温。
例如铂电阻温度及不仅准确度高、稳定性好,而且从-263℃~1100℃都能使用。
铜电阻温度计在-50℃~100℃范围内因其线性好,应用也较广泛。
3. 双电桥测低电阻用下图所示的单电桥测电阻时,被测臂上引线1l 、2l 和接触点1X 、2X 等处都有一定的电阻,约为Ω-210~Ω-410量级。
这些引线电阻和接触电阻与待测的x R 串联在一起,对低值电阻的测量影响很大。
为减小它们的影响,在双电桥中作了两处明显的改进:(1)被测电阻和测量盘电阻均采用四端接法。
四端接法示意图如下图中1C 、2C 是电流端,通常接电源回路,从而将这两端的引线电阻和接触电阻折合到电源回路的其他串联电阻中;1P 、2P 是电压端,通常接测量用的高电阻回路或电流为零的补偿回路,从而使这两端的引线电阻和接触电阻对测量的影响相对减小了。
(2)如下图:双电桥中增设了两个臂'1R 和'2R ,其阻值较高。
流过检流计G 的电流为零时,电桥达到平衡,于是可以得到以下三个方程21'223R I R I R I x =+11'123R I R I R I =+r I I R R I )()(23'1'22-=+上式中各量的意义相应地与上图中的符号相对应。
解这三个方程可得:⎪⎪⎭⎫ ⎝⎛-+++='1'212'2'1'112R R R R r R R rR R R R R x ① 双电桥在结构设计上尽量做到'1'212R R R R =,并且尽量今小电阻r ,因此可得R R R R x 12=同样,在仪器中将C R R =12做成比率臂,则CR R x = ②这样,电阻R 和x R 的电压端附近附加电阻(即两端的引线电阻和接触电阻)由于和高阻值臂串联,其影响减小了;两个外侧电流端的附加电阻串联在电源回路中,其影响可忽略;两个内侧电流的附加电阻和小电阻r 相串联,相当于增大了①式中的r ,其影响通常也可忽略。
于是只要将被测低电阻按四端接法接入双电桥进行测量,就可像单电桥那样用②来计算了。
4. 直流电桥测电阻及组装数字温度计 (1)非平衡电桥 一般平衡电桥测电阻,多是以检流计G 为平衡指示器,而非平衡电桥则是将检流计G 去掉,通过测量其两端的电压t U 来确定电阻,如下图所示:如果电源E 一定,当某桥臂待测电阻t R (如金属热电阻、电阻应变片、光敏电阻等)发生变化时,非平衡电桥的输出电压t U 也发生变化。
非平衡电桥的输出电压公式为⎪⎪⎭⎫⎝⎛+-+=t t R R RR R R E U 211 ③一般来说t U 与t 的关系不是线性的,为了组装数字温度计,适当地选择电桥参数(1R 、2R 、R 和E ),使其非线性项误差很小,在一定的温度范围内呈近似线性关系。
这就是线性化设计。
(2)互易桥 为简单起见,我们利用现有的QJ —23型惠斯通电桥改装成非平衡桥,用铜丝电阻作感温元件,阻值约Ω20。
用惠斯通电桥测量时一般会选C=0.01,将R 置于Ω2000,由该电桥线路知,此时Ω≈102R ,Ω≈10001R ,这样的阻值配比t U 测量误差较大,不能满足线性化设计的要求。
现在我们巧改惠斯通电桥,将电源E 和检流计G 互易位置,这样桥臂阻值之间的关系,就较为合理。
为讨论方便,将这种电源E ,检流计G 互换的惠斯通电桥称之为互易桥。
将G 再换成mV 表,就改成互易了的非平衡桥,用它测量t U 误差就会减小。
(3)线性化设计欲组装一个温度范围在0-100℃的铜电阻数字温度计,必须将t U ~t 的关系线性化,当采用量程为19.999mV 的214数字电压表来显示温度值时,要求显示值: t U t 101= (mV ) ④当温度t=0℃时,mV U 00=,此时互易桥为平衡桥有:C R R =12,C R R =0或CR R 0= 式中0R 为0℃时铜丝电阻值,R 为测量臂电阻,对铜电阻来说,在0-100℃范围内t R 与t 市线性关系:)1(0t R R t α+=,这样③式可改写为:⎪⎪⎭⎫ ⎝⎛++-+=)1(1111t C C E U t α ⑤考虑到本实验中选101.0<<=C ,铜电阻温度系数α~/103-℃,则⑤式还可以进一步简化为:U t C EC U t ∆++=2)1(α⑥U ∆为非线性误差项。
忽略U ∆后,比较④、⑥得:αC C E 10)1(2+=至此,已完成了线性化设计,选择电桥参数01.0=C ,CR R 0=,αC C E 10)1(2+=就可以用非平衡桥组装成数字温度计,U t U t ∆+=101(mV)。
三、实验步骤1. 惠斯通电桥测电阻(1)熟悉电桥结构,预调检流计零点。
(2)测不同量级的待测电阻值(其中有一个感性电阻),根据被测电阻的标称值(即大约值),首先选定比率C 并预置测量盘;接着调节电桥平衡而得到读数C 和R 值,并注意总结操作规律;然后测出偏离平衡位置d ∆分格所需的测量盘示值变化R ∆,以便计算灵敏阈。
(3)根据记录的数据计算测量值CR ,分析误差,最后给出各电阻的测量结果。
2. 单电桥测铜丝的电阻温度系数(1)测量加热前的水温及铜丝电阻值。
(2)从气势温度升温,每隔5℃~6℃左右测一次温度t 及相应的阻值t R 。
(3)注意摸索控制待测铜丝温度的方法。
要求在大致热平衡(温度计示值基本不变)时进行测量。
(4)测量后用计算机进行直线拟合来检测数据。
如果每次都在大致热平衡时测量,则{t}和{t R }直线拟合的相关系数应该在r=0.999以上。
3. 双电桥测低电阻测量一根金属丝的电阻或一根铜棒的电阻率。
注意低电阻的四端接法。
实验中要记下待测低电阻的编号,双电桥的编号、测量范围和准确度等级。
4. 直流电桥测电阻及组装数字温度计(1)将QJ-23型惠斯通电桥改装成互易桥(必须关掉电源后再操作)。
电源E 接到原电桥的G 的“外接”端(此时金属片必须将“内接”两端短路并拧紧),将数字电压表接到原电桥的B 端。
(2)按所选的电桥参数组装数字温度计,即01.0=C ,CR R 0=,αC C E 10)1(2+=,其中α和0R 在前面的实验中已测得。
分析α、0R 不准确对实验结果的影响。
2. 单电桥测铜丝的电阻温度系数进行绘图和拟和结果如下(直线为线性拟和直线):bt a R t +=a=11.67971 b=0.0495 r=0.99997则铜丝的温度系数为:αR =4.24*10-33. 直流电桥测电阻及组装数字温度计E=(1+C)2/10C α=2.406V实验测得的数据如下:进行拟和作图得到(直线为线性拟和直线):t bU a t +=a=-0.04019 b=0.09965 r=0.99996五、误差分析1. QJ-23型单电桥不确定度计算使用QJ-23型单电桥在一定参考条件下(20℃附近、电源电压偏离额定值不大于10%、绝缘电阻符合一定要求、相对湿度40%~60%等),电桥的基本误差极限lim E 可表示为)10%)((lim N CR CR E +±=α ① 在上式中C 是比率值,R 是测量盘示值。
第一项正比与被测电阻值;第二项是常数项,N R 为基准值,暂取N R 为Ω5000,作为实验教学中一种假定的简化处理。
等级指数α主要反映了电桥中各标准电阻(比率臂C 和测量臂R )的准确度。
等级指数α往往还与一定的测量范围、电源电压和检流计的条件相联系。
将各个电阻的测量结果代入上式中得:lim 120(%)(500)0.2%(0.112445000.1)0.3488R E CR C α≈Ω=+=⨯⨯+⨯=lim1(%)(500)0.2%(110255001) 3.05R k E CR C α≈Ω=+=⨯⨯+⨯=lim11(%)(500)0.5%(10112350010)81.15R k E CR C α≈Ω=+=⨯⨯+⨯=lim 360(%)(500)0.5%(1003620500100)2060R k E CR C α≈Ω=+=⨯⨯+⨯=lim200(%)(500)0.2%(0.119355000.1)0.487R E CR C α≈Ω=+=⨯⨯+⨯=若测量范围或电源、检流计条件不符合等级指数对应的要求时,我们会发现电桥测量不够“灵敏”,即电桥平衡后再改变x R (实际上等效地改变R )而检流计却未见偏转。
我们可将检流计灵敏阈(0.2分格)所对应的被测电阻的变化量s ∆叫做电桥的灵敏阈。
x R 的改变量s ∆可这样测得:平衡后,将测量盘电阻R 认为地调偏到R R ∆+,使检流计偏转d ∆分格(如2或1分格),则按此比例关系再求出0.2分格所对应得s ∆,即 d R C s ∆∆=∆/2.0将各电阻的测量数据代入上式得:1200.2/0.20.12/80.005s R C R d ≈Ω∆=∆∆=⨯⨯=10.2/0.20.11/50.04s R k C R d ≈Ω∆=∆∆=⨯⨯=110.2/0.2105/4 2.5s R k C R d ≈Ω∆=∆∆=⨯⨯=3600.2/0.21003/320s R k C R d ≈Ω∆=∆∆=⨯⨯=2000.2/0.20.13/50.012sR C R d ≈Ω∆=∆∆=⨯⨯=电桥的灵敏阈s ∆反映了平衡判断中可能包含的误差,其值既和电源及检流计的参量有关,也和比率C 及x R 的大小有关。