由于本人参加我们电气学院的电气小课堂,主讲的是计算机算法计算潮流这章,所以潜心玩了一个星期,下面整理给大家分享下。
本人一个星期以来的汗水,弄清楚了计算机算法计算潮流的基础,如果有什么不懂的可以发信息到邮箱:zenghao616@接下来开始弄潮流的优化问题,吼吼!电力系统的潮流计算的计算机算法:以MATLAB为环境这里理论不做过多介绍,推荐一本专门讲解电力系统分析的计算机算法的书籍---------《电力系统分析的计算机算法》—邱晓燕、刘天琪编著。
这里以这本书上的例题【2-1】说明计算机算法计算的过程,分别是牛顿拉弗逊算法的直角坐标和极坐标算法、P-Q分解算法。
主要是简单的网络的潮流计算,其实简单网络计算和大型网络计算并无本质区别,代码里面只需要修改循环迭代的N即可,这里旨在弄清计算机算法计算潮流的本质。
代码均有详细的注释.其中简单的高斯赛德尔迭代法是以我们的电稳教材为例子讲,其实都差不多,只要把导纳矩阵Y给你,节点的编号和分类给你,就可以进行计算了,不必要找到原始的电气接线图。
理论不多说,直接上代码:简单的高斯赛德尔迭代法:这里我们只是迭代算出各个节点的电压值,支路功率并没有计算。
S_ij=P_ij+Q_ij=V_i(V_i* - V_j*) * y_ij*可以计算出各个线路的功率在显示最终电压幅角的时候注意在MATLAB里面默认的是弧度的形式,需要转化成角度显示。
clear;clc;%电稳书Page 102 例题3-5%计算网络的潮流分布 --- 高斯-赛德尔算法%其中节点1是平衡节点%节点2、3是PV节点,其余是PQ节点% 如果节点有对地导纳支路%需将对地导纳支路算到自导纳里面%------------------------------------------------%%输入原始数据,每条支路的导纳数值,包括自导和互导纳;y=zeros(5,5);y(1,2)=1/(0.0194+0.0592*1i);y(1,5)=1/(0.054+0.223*1i);y(2,3)=1/(0.04699+0.198*1i);y(2,4)=1/(0.0581+0.1763*1i);%由于电路网络的互易性,导纳矩阵为对称的矩阵for i=1:1:5for j=1:1:5y(j,i)=y(i,j);endend%节点导纳矩阵的形成Y=zeros(5,5);%求互导纳for i=1:1:5for j=1:1:5if i~=jY(i,j)=-y(i,j);endendend%求自导纳for i=1:1:5%这句话是说将y矩阵的第i行的所有元素相加,得到自导纳的值 Y(i,i)=sum(y(i,:));end%上面求得的自导纳不包含该节点的对地导纳数值,需要加上Y(2,2)=Y(2,2)+0.067*1i;Y(3,3)=Y(3,3)+0.022*1i;Y(4,4)=Y(4,4)+0.0187*1i;Y(5,5)=Y(5,5)+0.0246*1i;%导纳矩阵的实部和虚部G = real(Y);B = imag(Y);Qc2=0;Qc3=0;%原始节点功率%这里电源功率为正,负荷功率为负S(1)=0;S(2)=-0.217-0.121*1i+Qc2*1i;S(3)=-0.749-0.19*1i+Qc3*1i;S(4)=-0.658+0.039*1i;S(5)=-0.076-0.016*1i;%节点功率的P QP = real(S);Q = imag(S);%下面是两个PV节点的无功初始值Q(2) = 0;Q(3) = 0;U=ones(5,1); %1列5行的‘1’矩阵%节点电压初始值U(1)=1.06;U(2)=1.045;U(3)=1.01;U_reg=U;Sum_YU0=0;%中间变量Sum_YU1=0;%中间变量for cont=1:1:6 %这里的cont是迭代次数for i=2:1:5for j=1:1:iif i~=jSum_YU0 = Sum_YU0 + Y(i,j)*U_reg(j);endendfor j=i+1:1:5Sum_YU1 = Sum_YU1 + Y(i,j)*U(j);endU(i)=( (P(i)-Q(i)*1i ) / conj(U(i)) - Sum_YU0 - Sum_YU1 ) / Y(i,i); U_reg(i)=U(i);%PV节点计算%下面是把求出的U2、U3只保留其相位,幅值不变if i==2angle_U2 = angle(U(2));U(2)=1.045*cos(angle_U2)+1.045*sin(angle_U2)*1i;Q(2)=imag( U(2)*( conj(Sum_YU0) + conj(Sum_YU1) + conj(Y(2,2)*U(2)) ) );endif i==3angle_U3 = angle(U(3));U(3)=1.01*cos(angle_U3)+1.01*sin(angle_U3)*1i;Q(3)=imag( U(3)*( conj(Sum_YU0) + conj(Sum_YU1) + conj(Y(3,3)*U(3)) ) );end% 下面做越界检查%if Q(4)>Q_Max% Q(4) = Q_Max;%end%if Q(4)<Q_Min% Q(4) = Q_Min;%end%下面可以做PV节点收敛判断Sum_YU0 = 0;Sum_YU1 = 0;endend%节点注入无功,流入为正,流出为负Qc2=Q(2)+0.121-1.045^2 * 0.067;Qc3=Q(3)+0.19-1.01^2 * 0.022;%电压幅值和相角angle_U=angle(U)*180/pi;U=abs(U);S_Line=zeros(5,5);%计算平衡节点功率S_BalanceNode=0;for j=1:1:5S_BalanceNode = S_BalanceNode + U(1) * conj(Y(1,j)*U(j));end%下面由上面算出的电压值求线路的功率%这里计算出来的线路功率的有功、无功%for i=1:1:5% for j=i:1:5% if i~=j% S_Line(i,j)=U(i)*( conj(U(i))-conj(U(j)) ) * conj(y(i,j));% end% if i==2% %S_Line(2,j)=S_Line(2,j)+U(2)*conj(0.067*1i);% end% if i==3% %S_Line(3,j)=S_Line(3,j)+U(3)*conj(0.022*1i);% end% end%end计算网络的潮流分布 ---- Newton算法(直角坐标)clear;clc;%电稳书Page 102 例题3-5%计算网络的潮流分布 ---- Newton算法(直角坐标)%其中节点1是平衡节点%节点2、3是PV节点,其余是PQ节点% 如果节点有对地导纳支路%需将对地导纳支路算到自导纳里面%------------------------------------------------%%输入原始数据,每条支路的导纳数值,包括自导和互导纳;y=zeros(5,5);y(1,2)=1/(0.0194+0.0592*1i);y(1,5)=1/(0.054+0.223*1i);y(2,3)=1/(0.04699+0.198*1i);y(2,4)=1/(0.0581+0.1763*1i);%由于电路网络的互易性,导纳矩阵为对称的矩阵for i=1:1:5for j=1:1:5y(j,i)=y(i,j);endend%节点导纳矩阵的形成Y=zeros(5,5);%求互导纳for i=1:1:5for j=1:1:5if i~=jY(i,j)=-y(i,j);endendend%求自导纳for i=1:1:5%这句话是说将y矩阵的第i行的所有元素相加,得到自导纳的值Y(i,i)=sum(y(i,:));end%上面求得的自导纳不包含该节点的对地导纳数值,需要加上Y(2,2)=Y(2,2)+0.067*1i;Y(3,3)=Y(3,3)+0.022*1i;Y(4,4)=Y(4,4)+0.0187*1i;Y(5,5)=Y(5,5)+0.0246*1i;%导纳矩阵的实部和虚部G = real(Y);B = imag(Y);%节点2、3需补偿的无功Qc2=0;Qc3=0;%原始节点功率%这里电源功率为正,负荷功率为负S(1)=0;S(2)=-0.217-0.121*1i+Qc2*1i;S(3)=-0.749-0.19*1i+Qc3*1i;S(4)=-0.658+0.039*1i;S(5)=-0.076-0.016*1i;%节点功率的P QP = real(S);Q = imag(S);%下面是两个PV节点的无功初始值Q(2) = 0;Q(3) = 0;%给点电压初始值e=[1.06,1.045,1.01,1,1];f=[0,0,0,0,0];U=e+f*1i;delta_U=zeros(1,5);delta_P=zeros(1,5);delta_Q=zeros(1,5);delta_PQV=ones(8,1);Sum_GB1=0;Sum_GB2=0;cont=0;while max(delta_PQV > 1e-6),cont=cont+1;%for cont=1:1:3%下面开始计算delta_P/delta_Q/delta_Ufor i=2:1:5for j=1:1:5Sum_GB1=Sum_GB1 + ( G(i,j)*e(j) - B(i,j)*f(j) );Sum_GB2=Sum_GB2 + ( G(i,j)*f(j) + B(i,j)*e(j) );enddelta_P(i)=P(i)-e(i)*Sum_GB1-f(i)*Sum_GB2;if i~=2 && i~=3 %不为节点2,3则计算无功delta_Q(i)=Q(i)-f(i)*Sum_GB1+e(i)*Sum_GB2;endif i==2 || i==3 %这里计算delta_U的值,始终为零delta_U(i)=U(i)^2-( e(i)^2 + f(i)^2 );endSum_GB1=0;Sum_GB2=0;end%___________________________________%%下面计算雅克比矩阵J=zeros(8,8);for ii=2:1:5i=ii-1;for j=1:1:5Sum_GB1=Sum_GB1 + ( G(ii,j)*e(j) - B(ii,j)*f(j) );Sum_GB2=Sum_GB2 + ( G(ii,j)*f(j) + B(ii,j)*e(j) );endfor jj=2:1:5j=jj-1;if ii~=2 && ii~=3 %PQ节点if ii==jjJ(2*i-1,2*i-1)=-Sum_GB1-G(ii,ii)*e(ii)-B(ii,ii)*f(ii);J(2*i-1,2*i)=-Sum_GB2+B(ii,ii)*e(ii)-G(ii,ii)*f(ii);J(2*i,2*i-1)=Sum_GB2+B(ii,ii)*e(ii)-G(ii,ii)*f(ii);J(2*i,2*i)=-Sum_GB1+G(ii,ii)*e(ii)+B(ii,ii)*f(ii);elseJ(2*i-1,2*j-1)=-(G(ii,jj)*e(ii)+B(ii,jj)*f(ii)); J(2*i-1,2*j)=B(ii,jj)*e(ii)-G(ii,jj)*f(ii);J(2*i,2*j-1)=B(ii,jj)*e(ii)-G(ii,jj)*f(ii);J(2*i,2*j)=(G(ii,jj)*e(ii)+B(ii,jj)*f(ii));endelse%PV节点if ii==jjJ(2*i-1,2*i-1)=-Sum_GB1-G(ii,ii)*e(ii)-B(ii,ii)*f(ii);J(2*i-1,2*i)=-Sum_GB2+B(ii,ii)*e(ii)-G(ii,ii)*f(ii);J(2*i,2*i-1)=-2*e(ii);J(2*i,2*i)=-2*f(ii);elseJ(2*i-1,2*j-1)=-(G(ii,jj)*e(ii)+B(ii,jj)*f(ii)); J(2*i-1,2*j)=B(ii,jj)*e(ii)-G(ii,jj)*f(ii);J(2*i,2*j-1)=0;J(2*i,2*j)=0;endendendSum_GB1=0;Sum_GB2=0;end%在求解修正方程之前建议把delta_P和delta_Q,delta_U全部放在一个矩阵delta_PQV=[delta_P(2);delta_U(2);delta_P(3);delta_U(3);delta_P(4) ;delta_Q(4);delta_P(5);delta_Q(5)];%下面求解修正方程;注意矩阵运算时候的左除和右除的区别delta_ef=-J\delta_PQV;%下面修正各个节点的电压for i=2:1:5e(i)=e(i)+delta_ef(2*(i-1)-1);f(i)=f(i)+delta_ef(2*(i-1));end%到这里第一轮迭代完成end%电压幅值和相角U=e+f*1i;angle_U=angle(U)*180/pi;%节点注入无功,流入为正,流出为负Sum_YU=0;for i=2:1:3for j=1:1:5Sum_YU = Sum_YU + Y(i,j)*U(j);endQ(i)=imag( U(i)*conj( Sum_YU ) );Sum_YU=0;endQc2=Q(2)+0.121-1.045^2 * 0.067;Qc3=Q(3)+0.19-1.01^2 * 0.022;U=abs(U);disp(['Iteration times : ' num2str(cont)]);%显示最终的迭代次数牛顿算法求解潮流 (极坐标):clear;clc;%牛顿算法求解潮流 (极坐标)%计算网络的潮流分布%其中节点5是平衡节点%节点1、2、3是PQ节点,节点4是PV节点% 如果节点有对地导纳支路%需将对地导纳支路算到自导纳里面%------------------------------------------------%%输入原始数据,每条支路的导纳数值,包括自导和互导纳;Y=[0.8381-3.7899*1i,-0.4044+1.6203*1i,0,0,-0.4337+2.2586*1i;...-0.4044+1.6203*1i,0.7769-3.3970*1i,-0.3726+1.8557*1i,0,0;...0,-0.3726+1.8557*1i,1.1428-7.0210*1i,-0.5224+4.1792*1i,-0.2739+1. 2670*1i;...0,0,-0.5224+4.1792*1i,0.5499-4.3591*1i,0;...-0.4337+2.2586*1i,0,-0.2739+1.2670*1i,0,0.7077-3.4437*1i];%导纳矩阵的实部和虚部G = real(Y);B = imag(Y);%给点电压初始值U = [1,1,1,1,1.05];angle_U=[0,0,0,0,0];%for i=1:1:5% U(i)=U_abs(i)*cos(angle_U(i))+U_abs(i)*sin(angle_U(i))*1i;%end%原始节点功率%这里电源功率为正,负荷功率为负%下面给点PQ PV节点功率值S=[-0.22-0.14*1i,-0.18-0.09*1i,-0.27-0.13*1i,0.35,0];%节点功率的P QP = real(S);Q = imag(S);%下面是PV节点的无功初始值Q(4) = 0;delta_P=zeros(1,5);delta_Q=zeros(1,5);%delta_angleU=zeros(1,4);%delta_absU=zeros(1,4);delta_PQ=ones(8,1);Sum_GB1=0;Sum_GB2=0;cont=0;%最外层循环,cont代表迭代的次数,这里可以用约束条件来代替%for cont=1:1:4while max(delta_PQ)>1e-6,%下面计算delta_P/delta_Q/delta_Ucont=cont+1;for i=1:1:4for j=1:1:5Sum_GB1=Sum_GB1 + U(j)*( G(i,j)*cos(angle_U(i)-angle_U(j)) + B(i,j)*sin(angle_U(i)-angle_U(j)) );Sum_GB2=Sum_GB2 + U(j)*( G(i,j)*sin(angle_U(i)-angle_U(j)) - B(i,j)*cos(angle_U(i)-angle_U(j)) );enddelta_P(i)=P(i)-U(i)*Sum_GB1;if i~=4 %不为节点四则计算无功delta_Q(i)=Q(i)-U(i)*Sum_GB2;endSum_GB1=0;Sum_GB2=0;end%_______________________________________________________%%下面计算雅克比矩阵J=zeros(7,7);for ii=1:1:4for jj=1:1:4if ii ~= 4 %PQ节点if ii==jjJ(2*ii-1,2*ii-1)=U(ii)^2*B(ii,ii)+Q(ii);J(2*ii-1,2*ii)=-U(ii)^2*G(ii,ii)-P(ii);J(2*ii,2*ii-1)=U(ii)^2*G(ii,ii)-P(ii);J(2*ii,2*ii)=U(ii)^2*B(ii,ii)-Q(ii);elseJ(2*ii-1,2*jj-1)=-U(ii)*U(jj)*( G(ii,jj)*sin(angle_U(ii)-angle_U( jj)) - B(ii,jj)*cos(angle_U(ii)-angle_U(jj)) );J(2*ii-1,2*jj)=-U(ii)*U(jj)*( G(ii,jj)*cos(angle_U(ii)-angle_U(jj)) + B(ii,jj)*sin(angle_U(ii)-angle_U(jj)) );J(2*ii,2*jj-1)=U(ii)*U(jj)*( G(ii,jj)*cos(angle_U(ii)-angle_U(jj)) + B(ii,jj)*sin(angle_U(ii)-angle_U(jj)) );J(2*ii,2*jj)=-U(ii)*U(jj)*( G(ii,jj)*sin(angle_U(ii)-angle_U(jj)) - B(ii,jj)*cos(angle_U(ii)-angle_U(jj)) );endelse%PV节点if ii==jjJ(2*ii-1,2*ii-1)=U(ii)^2*B(ii,ii)+Q(ii);J(2*ii-1,2*ii)=-U(ii)^2*G(ii,ii)-P(ii);elseJ(2*ii-1,2*jj-1)=-U(ii)*U(jj)*( G(ii,jj)*sin(angle_U(ii)-angle_U( jj)) - B(ii,jj)*cos(angle_U(ii)-angle_U(jj)) );J(2*ii-1,2*jj)=-U(ii)*U(jj)*( G(ii,jj)*cos(angle_U(ii)-angle_U(jj)) + B(ii,jj)*sin(angle_U(ii)-angle_U(jj)) );endendendend%在求解修正方程之前建议把delta_ef和delta_ef全部放在一个矩阵delta_PQ=[delta_P(1);delta_Q(1);delta_P(2);delta_Q(2);delta_P(3); delta_Q(3);delta_P(4)];%下面求解修正方程;注意矩阵运算时候的左除和右除的区别J=J(1:7,1:7);delta_ef=-J\delta_PQ;%下面修正各个节点的电压for i=1:1:4if i~=4U(i)=U(i)+delta_ef(2*i)*U(i);endangle_U(i)=angle_U(i)+delta_ef(2*i-1);end%到这里第一轮迭代完成end%下面显示出满足条件后的迭代的次数disp(['Iteration times : ' num2str(cont)]);%下面计算平衡节点5的功率PQfor j=1:1:5Sum_GB1=Sum_GB1 + U(j)*( G(5,j)*cos(angle_U(5)-angle_U(j)) + B(5,j)*sin(angle_U(5)-angle_U(j)) );Sum_GB2=Sum_GB2 + U(j)*( G(5,j)*sin(angle_U(5)-angle_U(j)) - B(5,j)*cos(angle_U(5)-angle_U(j)) );endP(5)=U(5)*Sum_GB1;Q(5)=U(5)*Sum_GB2;%下面将相角用角度表示for i=1:1:5angle_U(i)=angle_U(i)*180/pi;End计算计算法P-Q算法计算潮流:这个算法是由牛顿算法的极坐标形式简化而来。