当前位置:文档之家› 煤质基础知识

煤质基础知识

煤质基础知识Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】部分煤质基础知识简介一、煤的物理性质颜色和粉色光泽比重和容重透明度折光性反光性Δ煤的物理性质发光性硬度脆度断口裂隙导电性磁性和耐热性等煤的颜色是指新鲜煤块表面的自然色彩,是煤对不同波长可见光波吸收的结果。

在不同的光学条件下,煤呈现不同的颜色。

在普通白光照射下,煤的表面反射光线所显示的颜色称为表色。

腐植煤的表色随着变质程度的增高而变化,见下表:腐泥煤的表色有时呈深灰色,有时为浅黄、棕褐,有时为灰绿以至黑色,变化不定。

煤中水分能使煤的颜色加深,矿物质所起的作用往往相反。

煤研成粉末的颜色称为粉色。

一般都用钢针刻划煤的表面或者用镜煤在脱釉的素烧瓷板上刻划的条痕而得,所以也被称为条痕色。

煤的粉色往往略浅于表色,但是煤的粉色变化又较表色固定,因而常常可以收到更好的效果。

在普通透射光下煤的切面(薄片)所显的颜色称为体色。

在垂直反射光下煤的表面(光片)所显示的颜色称为反射色。

长焰煤常见光泽为沥青状光泽,颜色黑色,有时带有褐黑色色彩,条痕褐色、褐黑色。

比重是指煤在一定温度下(20℃)条件下,煤的重量与相同体积(不包括煤孔隙中的)水的重量之比。

体重(容重),指在一定的温度(20℃)条件下,煤的重量与同体积(包括煤孔隙中的)水的重量之比。

比重-容重孔隙率= ×100%比重煤的比重与煤岩类型、变质程度以及煤中所含矿物的成分和含量有密切关系。

通常所指煤的比重都是包括矿物质在内的比重。

因此,煤的比重很大程度上受到所含矿物质的影响,比重随矿物质含量的增大而增大。

变质程度相同的煤,其煤岩类型不同,比重也有差异,一般暗淡煤的比重较光亮煤为大。

煤的比重随着变质程度的增高而加大。

褐煤一般<,烟煤多为~,无烟煤为~;腐泥煤一般仅为。

煤的容重又称“煤的体重”或“煤的假比重”。

煤的容重是在勘探过程中通过采集专门的容重样测定的。

它是煤层储量计算的重要参数之一。

一般褐煤的容重为~,烟煤为~,无烟煤的容重变化范围大,可由~,煤的容重同样受煤岩类型、变质程度和矿物质的影响。

煤的光泽是指常光下煤新鲜表面的反光能力,是肉眼鉴定煤的主要标志之一。

根据煤的平均光泽强度用肉眼可以区分出腐植煤的四种煤岩类型:光亮煤,半亮煤,半暗煤和暗淡煤。

腐植煤常见的光泽特征有沥青光泽、玻璃光泽、金刚光泽和似金属光泽等。

常见的油脂光泽为玻璃光泽由于表面不平所引起的变种;此外还有因集合方式不同所造成的光泽变种,例如:由于纤维状集合方式所引起的丝绢光泽,由于松散状集合方式所引起的土状光泽等。

年轻褐煤常常是微弱的象蜡一样的光泽,称为蜡状光泽。

腐泥煤一般光泽暗淡。

影响煤的光泽变化的因素很多,主要有煤岩成分、变质程度、风氧化程度、矿物质特征和表面性质、断口、裂隙、错动与沾污等。

煤的硬度泛指抵抗外来机械作用的能力或强度。

刻划硬度煤的硬度压痕硬度磨损硬度(耐磨硬度)刻划硬度接近于普通矿物鉴定中的摩氏(Mons)硬度,它是用一套标准矿物(摩氏硬度计)刻划煤标本而得出的粗略的相对硬度概念。

目前普遍采用显微硬度作为变质指标,它是压痕硬度的一种。

贝壳状断口参次状断口煤的断口(根据表面阶梯状断口形状和性棱角状断口质的不同)粒状断口针状断口等煤的裂隙是指在成煤过程中,煤受到自然界各种应力的影响所造成的裂开现象。

按成因不同分为内生裂隙和外生裂隙两种。

内生裂隙是在煤化作用过程中,煤中凝胶化物质受到温度和压力等因素的影响,体积均匀收缩产生内张力而形成的一种张裂隙。

内生裂隙的发育情况与煤的变质程度和煤岩成分(煤岩类型)密切相关。

在同一煤岩类型中,内生裂隙的数目(或发育程度)随变质程度由低到高,作规律性变化。

内生裂隙具有以下特点:(1)主要出现在比较均匀致密的光亮煤分层中,特别是镜煤凸镜体或条带中最发育;(2)一般垂直或大致垂直层理面;(3)裂隙面较平坦光滑,裂隙面或断层常伴生有眼球状的张力痕迹;(4)裂隙方向有大致互相垂直或斜交的两组,交叉呈四方形或菱形,其中一组裂隙较发育,另一组裂隙稀疏为次要裂隙组;(5)裂隙在中变质烟煤中最发育,而褐煤和无烟煤中则不发育。

由于光亮煤中的内生裂隙在同一变质阶段煤中数目比较稳定,因此,在判断煤的变质程度时,常以光亮煤为准。

外生裂隙是在煤层形成之后,受构造应力的作用产生的。

其特点为:(1)外生裂隙可出现在煤层的任何部位,通常以光亮煤分层最为发育,并往往同时穿过几个煤岩分层;(2)以不同角度与煤层层理面斜交;(3)裂隙面上常有波状、羽毛状或光滑的滑动痕迹,有时还可见到次生矿物或破碎煤屑的充填;(4)外生裂隙有时沿袭既成的内生裂隙而重叠发生。

煤在受力时或在自然条件下破坏时,沿不同方向各组裂隙发生破裂并构成一定的几何形态,某些作者称之为“节理”。

常见的节理有板状、柱状、立方体状、平行六面体状等;有时还可见到由复杂的外生裂隙面交互构成的近球状、锥状和鳞片状等。

二、煤的结构和构造1、煤的结构煤的结构是指煤的组成成分的各种特征—包括形态、大小、厚度、植物组织残迹以及它们之间数量关系的变化等。

煤的结构反映了成煤原始质料的性质、成分及其变化过程。

在变质过程中,煤的各种组成成分在肉眼标志上区别逐渐消失,在高变质煤中就不容易鉴定各种组成成分,因而煤肉眼结构逐渐不明显而趋于均一。

条带状结构线理状结构凸镜状结构(最常见的)均一状结构煤的结构木质状结构纤维状结构粒状结构叶片状结构(1)条带状结构由煤的组成成分相互交替而成条带状结构。

宽条带状(>5mm)条带状结构中条带状(3~5mm)细条带状(1~3 mm)条带结构在烟煤中表现最明显,尤以半亮煤和半暗煤中最常见,年轻的褐煤和高变质的无烟煤中条带状结构不明显。

(2)线理状结构往往伴随条带状结构同时出现,其宽度小于1mm。

根据线理之间交替的间距又可分为密集线理状和稀疏线理状两种。

组成线理的物质成分往往是镜煤、丝炭和粘土矿物等,它们断续出现在煤层各部分。

以半暗煤中常见。

(3)凸镜状结构镜煤、丝炭、粘土矿物和黄铁矿常以大小不等的凸镜体形式,连续或不连续散布于煤层中,构成凸镜状结构。

和线理状结构一样,凸镜状结构也常常同条带状结构伴生,并可作为条带状结构的一种特殊的变型。

以半暗煤和暗淡煤中常见。

(4)均一状结构组成成分较单纯,均匀,镜煤具较典型的均一状结构,若干腐泥煤、腐植腐泥煤和某些无烟煤也具有均一状结构。

(5)木质状结构是植物原生结构在煤中的反映。

煤在外观上清楚地保存了植物基部的木质组织的痕迹。

有时还可见到已被煤化的保存完整的树干和树桩,一般认为在泥炭化阶段由于凝胶化作用中断而保存。

木质状结构多见于褐煤。

(6)纤维状结构在一定程度上反映了植物原生结构,其最大特点是具有沿着一个方向延伸的性质。

是植物茎部组织丝炭化作用的产物,具疏松多孔的特点。

丝炭常以明显的纤维状结构为重要鉴定特征。

因此,丝炭又常称为纤维煤。

(7)粒状结构肉眼可见清楚的颗粒状。

常常是由煤中散布着大量稳定组分或矿物所造成。

常为某些暗煤或暗淡煤所特有的。

它的变型有时呈鲕状或豆状结构等。

(8)叶片状结构具有纤细的页理,能被分成极薄的薄片,外观呈纸片状、叶片状。

主要由于煤中顺层分布着大量角质体或木栓体所致。

2、煤的构造煤的构造是组成成分之间的空间排列和分布特点以及它们之间的相互关系。

它与煤组成成分的自身特征(如形态、大小)无关,而与植物遗体的聚积条件和变化过程有关。

由此可见,结构和构造之间最主要的差别在于鉴定结构时必须考虑组成成分,而构造仅说明煤中各组成成分和煤岩类型在空间中的分布、排列,它的最重要的构造标志是层理。

沉积岩和煤中的层理形成原因对比煤的构造按层理特征分为层状构造和块状构造。

(1)层状构造连续状水平层理不连续状(按煤层中层理的形态)不连续状层状构造波状层理凸镜状水平—波状斜层理斜波状水平层理表明泥炭沼泽内原始质料在平静的环境中,几乎没有水流动的条件下沉积形成,波状层理和斜层理表明泥炭沼泽内原始质料沉积的不均匀和水流动荡等条件下形成。

因此,根据层理形态及厚度,可以判断泥炭沼泽中介质的运动性质、介质运动的方向和物质的搬运强度等等。

见下表,煤中最常见的是水平层理,多数为连续水平层理,也有断续水平层理。

此外煤中见到一种细水平层理,经X光检验,所得煤的X射线图象表明这种情况是由纯煤物质(具白色色调的浅灰色)和矿物质薄层、薄膜(具暗色色调的浅灰色)相互交替造成的,说明泥炭沼泽内原始质料和矿物杂质具明显的分异和重新分布的特点。

(2)块状层理无层理,煤的外观均一致密,就一块标本来说,甚至难以分出垂直方向和水平方向,说明成煤物质的相对均匀。

多见于腐泥煤、腐植腐泥煤和某些暗淡型的腐植煤。

还原样燃点(℃)-原样燃点(℃)Δ煤的氧化程度= ×100%还原样燃点(℃)-氧化样燃点(℃)Δ确定各种煤类本性的两个非常重要的术语是煤的类型(Type)和煤的煤化程度(Rank)煤的类型是由煤岩组分(有机显微组分和无机显微组分的含量)和煤的物理性质(煤岩组分的形态和大小)表现的特性所决定的,而煤的煤化程度主要是煤的变质作用所达到的程度。

因此反映各种不同的有机的和无机的显微组分的比例、分布和组成的煤的类型决定煤的本性。

同样反映与地球化学因素所引起的变质作用有关的煤化程度也决定煤的本性。

一般认为在泥炭阶段,由于煤岩组分还未形成,而且并没有经受变质作用,泥炭的性质并不受到这两个参数的影响。

而各类泥炭的性质是由原始植物组成和分解度(无定形腐植物质占泥炭总有机物质的百分数)所决定的。

但从褐煤开始,特别是烟煤阶段开始这两个因素对形成煤的性质起很大的影响。

从化学的观点来看,在煤的成熟(煤化)过程中原始物料有机质官能团上的氧(开始)和氢(其次)从环状碳的“骨架”上脱去,并以气体分子的形式(H2O、CO x、CH4)从煤层中逸去,其结果是经受变质作用过的煤中的碳含量随煤化程度的增高而增高,因而碳含量时常用作确定煤化程度的指标。

但是化学组成不相似的原始物料中的各种显微组分在煤化阶段所起的变化是完全不同的。

因此,原始物料不同的两种类型的煤经相同的变质作用的程度,它们的碳含量有显着的差异(甚至以无灰基作为基准,排除碳酸盐中碳的干扰时),在同一个煤层中可以观察到有明显区别的两类煤。

同样地,含有相同煤岩显微组分的煤由于经受的变质作用的程度不同而使它们的碳含量有明显的区别。

所以只有煤的类型和煤化程度两个参数的紧密组合确定了煤的化学结构和各种性质。

Δ由于镜煤和镜质组是各种煤岩类型中最纯净、最易辨认而又较易剥离的成分,它在煤化过程中的变化介于壳质组和丝质组之间,比较均匀、适中和有代表性。

所以在确定煤的变质程度时,要用油浸物镜下测得的镜质组的最大反射率(R o Max)作为主要鉴定指标(见《煤化学》P33-36页)。

相关主题