第35练 圆锥曲线中的探索性问题[题型分析·高考展望] 本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值范围问题或探索性问题,试题难度较大.体验高考1.(2016·山东)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝⎛⎭⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝⎛⎭⎫m ,m22(m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m <2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m. 所以直线OD 方程为y =-14mx ,联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.②解 由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎫0,-m 22,又P ⎝⎛⎭⎫m ,m 22,F ⎝⎛⎭⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12,即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝⎛⎭⎫22,14. 因此S 1S 2的最大值为94,此时点P 的坐标为⎝⎛⎭⎫22,14.2.(2016·四川)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. 解 (1)由已知,得a =2b , 则椭圆E 的方程为x 22b 2+y 2b2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3,|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.② 方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |= ⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.高考必会题型题型一 定值、定点问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点. (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由. 解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)∵直线l 与y 轴相交于点M ,故斜率存在, 又F 坐标为(1,0),设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ), 设l 交椭圆A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2=8k 23+4k 2-2(4k 2-12)3+4k 21-8k 23+4k 2+4k 2-123+4k 2=-83.∴当直线l 的倾斜角变化时,λ+μ的值为定值-83.点评 (1)定点问题的求解策略把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然直线或曲线过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点. (2)定值问题的求解策略在解析几何中,有些几何量与参数无关,这就是“定值”问题,解决这类问题常通过取特殊值,先确定“定值”是多少,再进行证明,或者将问题转化为代数式,再证明该式是与变量无关的常数或者由该等式与变量无关,令其系数等于零即可得到定值.变式训练1 已知抛物线y 2=2px (p >0),过点M (5,-2)的动直线l 交抛物线于A ,B 两点,当直线l 的斜率为-1时,点M 恰为AB 的中点. (1)求抛物线的方程;(2)抛物线上是否存在一个定点P ,使得以弦AB 为直径的圆恒过点P ,若存在,求出点P 的坐标,若不存在,请说明理由. 解 (1)当直线l 的斜率为-1时, 直线l 的方程为x +y -3=0,即x =3-y , 代入y 2=2px (p >0)得y 2+2py -6p =0,y 1+y 22=-p =-2,p =2, 所以抛物线的方程为y 2=4x .(2)设直线l 的方程为x =m (y +2)+5, 代入y 2=4x 得y 2-4my -8m -20=0, 设点A (y 214,y 1),B (y 224,y 2),则y 1+y 2=4m ,y 1y 2=-8m -20,假设存在点P (y 204,y 0)总是在以弦AB 为直径的圆上,则P A →·PB →=(y 214-y 204)(y 224-y 204)+(y 1-y 0)(y 2-y 0)=0,当y 1=y 0或y 2=y 0时,等式显然成立; 当y 1≠y 0或y 2≠y 0时, 则有(y 1+y 0)(y 2+y 0)=-16,即4my 0+y 20-8m -20=-16,(4m +y 0+2)(y 0-2)=0, 解得y 0=2,x 0=1, 所以存在点P (1,2)满足题意. 题型二 定直线问题例2 在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2py (p >0)相交于A ,B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(2)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.解 方法一 (1)依题意,点N 的坐标为(0,-p ), 可设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为y =kx +p ,与x 2=2py 联立得⎩⎪⎨⎪⎧x 2=2py ,y =kx +p ,消去y 得x 2-2pkx -2p 2=0.由根与系数的关系得x 1+x 2=2pk ,x 1x 2=-2p 2. 于是S △ABN =S △BCN +S △ACN =12·2p |x 1-x 2|=p |x 1-x 2|=p (x 1+x 2)2-4x 1x 2=p4p 2k 2+8p 2=2p 2k 2+2,∴当k =0时,(S △ABN )min =22p 2.(2)假设满足条件的直线l 存在,其方程为y =a ,AC 的中点为O ′,l 与以AC 为直径的圆相交于点P ,Q ,PQ 的中点为H , 则O ′H ⊥PQ ,O ′点的坐标为(x 12,y 1+p2).∵|O ′P |=12|AC |=12x 21+(y 1-p )2=12y 21+p 2,|O ′H |=⎪⎪⎪⎪⎪⎪a -y 1+p 2=12|2a -y 1-p |,∴|PH |2=|O ′P |2-|O ′H |2 =14(y 21+p 2)-14(2a -y 1-p )2=(a -p2)y 1+a (p -a ),∴|PQ |2=(2|PH |)2=4[(a -p2)y 1+a (p -a )].令a -p 2=0,得a =p 2,此时|PQ |=p 为定值,故满足条件的直线l 存在, 其方程为y =p2,即抛物线的通径所在的直线.方法二 (1)前同方法一,再由弦长公式得 |AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·4p 2k 2+8p 2 =2p1+k 2·k 2+2,又由点到直线的距离公式得d =2p 1+k 2.从而S △ABN =12·d ·|AB |=12·2p1+k 2·k 2+2·2p 1+k 2=2p 2k 2+2.∴当k =0时,(S △ABN )min =22p 2.(2)假设满足条件的直线l 存在,其方程为y =a ,则以AC 为直径的圆的方程为(x -0)(x -x 1)+(y -p )(y -y 1)=0, 将直线方程y =a 代入得x 2-x 1x +(a -p )(a -y 1)=0, 则Δ=x 21-4(a -p )(a -y 1)=4[(a -p2)y 1+a (p -a )]. 设直线l 与以AC 为直径的圆的交点为P (x 3,y 3),Q (x 4,y 4),则有|PQ |=|x 3-x 4| = 4[(a -p2)y 1+a (p -a )]=2(a -p2)y 1+a (p -a ).令a -p 2=0,得a =p 2,此时|PQ |=p 为定值,故满足条件的直线l 存在, 其方程为y =p2,即抛物线的通径所在的直线.点评 (1)定直线由斜率、截距、定点等因素确定. (2)定直线一般为特殊直线x =x 0,y =y 0等.变式训练2 椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别是它的左、右焦点,已知椭圆C 过点(0,1),且离心率e =223.(1)求椭圆C 的方程;(2)如图,设椭圆的左、右顶点分别为A 、B ,直线l 的方程为x =4,P 是椭圆上异于A 、B 的任意一点,直线P A 、PB 分别交直线l 于D 、E 两点,求F 1D →·F 2E →的值;(3)过点Q (1,0)任意作直线m (与x 轴不垂直)与椭圆C 交于M 、N 两点,与l 交于R 点,RM →=xMQ →,RN →=yNQ →,求证:4x +4y +5=0. (1)解 由题意可得b =1,c a =223,∴a =3,椭圆C 的方程为x 29+y 2=1.(2)解 设P (x 0,y 0),则直线P A 、PB 的方程分别为 y =y 0x 0+3(x +3),y =y 0x 0-3(x -3), 将x =4分别代入可求得D ,E 两点的坐标分别为D (4,7y 0x 0+3),E (4,y 0x 0-3). 由(1)知,F 1(-22,0),F 2(22,0),∴F 1D →·F 2E →=(4+22,7y 0x 0+3)·(4-22,y 0x 0-3)=8+7y 20x 20-9,又∵点P (x 0,y 0)在椭圆C 上,∴x 209+y 20=1⇒y 20x 20-9=-19, ∴F 1D →·F 2E →=659.(3)证明 设M (x 1,y 1),N (x 2,y 2),R (4,t ), 由RM →=xMQ →得(x 1-4,y 1-t )=x (1-x 1,-y 1),∴⎩⎨⎧x 1=4+x 1+x,y 1=t1+x(x ≠-1),代入椭圆方程得(4+x )2+9t 2=9(1+x )2,① 同理由RN →=yNQ →得(4+y )2+9t 2=9(1+y )2,② ①-②消去t ,得x +y =-54,∴4x +4y +5=0. 题型三 存在性问题例3 (1)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a ,得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1.(2)如图,梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,|AB |=423,|CD |=2-423,AC ⊥BD ,M 为CD 的中点.①求点M 的轨迹方程;②过M 作AB 的垂线,垂足为N ,若存在正常数λ0,使MP →=λ0PN →,且P 点到A ,B 的距离和为定值,求点P 的轨迹E 的方程;③过(0,12)的直线与轨迹E 交于P 、Q 两点,求△OPQ 面积的最大值.解 ①设点M 的坐标为M (x ,y )(x ≠0), 则C (x ,y -1+223),D (x ,y +1-223).又A (0,223),B (0,-223).由AC ⊥BD 有AC →·BD →=0, 即(x ,y -1)·(x ,y +1)=0, ∴x 2+y 2=1(x ≠0),即点M 的轨迹方程为x 2+y 2=1(x ≠0). ②设P (x ,y ),则M ((1+λ0)x ,y ),代入M 的轨迹方程有(1+λ0)2x 2+y 2=1(x ≠0). 即x 2(11+λ0)2+y 2=1(x ≠0),∴点P 的轨迹为椭圆(除去长轴的两个端点). 要使点P 到A ,B 的距离之和为定值, 则以A ,B 为焦点,故1-1(1+λ0)2=(223)2.∴λ0=2,从而所求P 的轨迹方程为x 219+y 2=1(x ≠0).③易知l 的斜率存在,设方程为y =kx +12,联立9x 2+y 2=1(x ≠0), 有(9+k 2)x 2+kx -34=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-k9+k 2,x 1x 2=-34(9+k 2).∴|x 2-x 1|=(x 1+x 2)2-4x 1x 2=4k 2+27(9+k 2)2,令t =k 2+9,则|x 2-x 1|=4t -9t 2且t ≥9. ∴S △OPQ =12×12|x 2-x 1|=14 -9×1t 2+4×1t=14-9(1t -29)2+49.∵t ≥9,∴0<1t ≤19,∴当1t =19,即t =9,也即k =0时,△OPQ 面积取最大值,最大值为312. 点评 存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.变式训练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,得点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.高考题型精练1.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2. (1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2, 所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P (1,32)在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围;(3)过椭圆C 1:x 2a 2+y 2b 2-53=1上异于其顶点的任一点P ,作圆O :x 2+y 2=43的两条切线,切点分别为M ,N (M ,N 不在坐标轴上),若直线MN 在x 轴,y 轴上的截距分别为m ,n ,证明:13m 2+1n2为定值.(1)解 由题意得c =1,所以a 2=b 2+1, 又因为点P (1,32)在椭圆C 上,所以1a 2+94b 2=1,可解得a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)解 设直线l 方程为y =kx +2,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,x 24+y 23=1,得(4k 2+3)x 2+16kx +4=0, 因为Δ=12k 2-3>0,所以k 2>14,又x 1+x 2=-16k4k 2+3,x 1x 2=44k 2+3,因为∠AOB 为锐角,所以OA →·OB →>0, 即x 1x 2+y 1y 2>0,所以x 1x 2+(kx 1+2)(kx 2+2)>0, 所以(1+k 2)x 1x 2+2k (x 1+x 2)+4>0, 所以(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0,即-12k 2+164k 2+3>0,所以k 2<43,所以14<k 2<43,解得-233<k <-12或12<k <233.(3)证明 由题意:C 1:x 24+3y 24=1,设点P (x 1,y 1),M (x 2,y 2),N (x 3,y 3), 因为M ,N 不在坐标轴上,所以k PM =-1k OM =-x 2y 2, 直线PM 的方程为y -y 2=-x 2y 2(x -x 2),化简得x 2x +y 2y =43,① 同理可得直线PN 的方程为x 3x +y 3y =43,②把P 点的坐标分别代入①、②得⎩⎨⎧x 2x 1+y 2y 1=43,x 3x 1+y 3y 1=43,所以直线MN 的方程为x 1x +y 1y =43,令y =0,得m =43x 1,令x =0,得n =43y 1,所以x 1=43m ,y 1=43n,又点P 在椭圆C 1上,所以(43m )2+3(43n )2=4,即13m 2+1n 2=34为定值. 3.(2016·山东)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值;②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c . 由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3.②解 设A (x 1,y 1),B (x 2,y 2).由①知直线P A 的方程为y =kx +m . 直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0,y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m =-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k , 由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66, 即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),短轴的一个端点B 到F 的距离等于焦距.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于不同的两点M ,N ,是否存在直线l ,使得△BFM 与△BFN 的面积比值为2?若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)由已知得c =1,a =2c =2,b 2=a 2-c 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)S △BFM S △BFN =2等价于FM FN =2,当直线l 斜率不存在时,FMFN =1,不符合题意,舍去;当直线l 斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去x 并整理得, (3+4k 2)y 2+6ky -9k 2=0,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=-6k 3+4k2, ①y 1y 2=-9k 23+4k 2,②由FMFN=2得y 1=-2y 2, ③由①②③解得k =±52,因此存在直线l :y =±52(x -1)谢谢大家。