1.设计题目:波形发生电路2.设计任务和要求:要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。
基本指标:输出频率分别为:102HZ 、103HZ;输出电压峰峰值VPP≥20V3.整体电路设计1)信号发生器:信号发生器又称信号源或振荡器。
按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。
各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。
通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。
2)电路设计:整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。
理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。
RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。
反相输入的滞回比较器:矩形波产生的重要组成部分。
积分电路:将方波变为三角波。
3)整体电路框图:为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。
三角波进入积分电路,得出的波形为所求的三角波。
其电路的整体电路框图如图1所示:图14)单元电路设计及元器件选择 a ) 方波产生电路根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。
电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。
滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。
图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。
从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。
运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。
u p 用u in 和u o 表示,有21o 1in 221o2in 1p 1111R R u R u R R R u R u R u ++=++=根据翻转条件,令上式右方为零,得此时的输入电压th Z 21o 21in U U R R u R R u ==-=U th 称为阈值电压。
滞回电压比较器的直流传递特性如图4所示。
设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。
如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。
图3 滞回电压比较器图4 滞回电压比较器的直流传递特性如果给图3所示电路输入三角波电压,其幅值大于U th ,设t = 0时,u o= -U Z ,其输出波形如图5所示。
可见,输出为方波。
图5 输入为三角波时滞回电压比较器的输出波形b ).方波—三角波发生电路给图3所示的滞回电压比较器级联一积分电路,再将积分器的输出作为比较器的输入,如图6所示。
由于积分电路可将方波变为三角波,而比较器的输入又正好为三角波,因此可定性判断出,图6电路的输出电压u o1为方波,u o2为三角波,如图7所示。
图6 方波—三角波发生电路下面分析其振荡周期。
积分器输出电压从-U th 增加到+U th 所需的时间为振荡周期T 的一半,由积分器关系式⎰+---=2Z thth 00d )(1T t tt U RCU U或212Z th T U RC U =注意到Z 21th U R R U =,故 214R RCR T =振荡频率则为1241RCR R T f ==U Z -U ZU th -U th tu o1u o2图7方波—三角波发生电路的输出波形c )元器件选择1))通用型集成单运放LM741CN电路所用的运放选用LM741CN,LM741CN 的管脚图如图所示,其特点是电压适应范围较宽,可在±5~±18V 范围内选用;具有很高的输入共模、差模电压,电压范围分别为±15V 和±30V;内含频率补偿和过载、短路保护电路;可通过外接电位器进行调零.波形发生器用到得脚位为2.3.4.6.7 脚位2:INV.INPUT 脚位3:NON-INV.INPUT 脚位4: V- 脚位6:OUTPUT 脚位7:V+图2 LM741管脚分布2))稳压二极管双稳压二极管的稳定电压根据方波幅值选取,由设计要求可取12伏特的稳压二极管,本次试验采用的1N4742A 稳压二极管。
3))电阻电阻R4根据双稳压二极管的最大电流确定,此处可取10 k ,其他电阻分别有10K 电阻,120K 电阻和25K 电阻。
4))电容电容C 根据振荡频率要求确定,本次实验采用的100nF 和10nF 两种电容。
5))由13241CR R R T f ==式,令R 1=25K Ω,为达到所要求的频率,可求得三组值: 当频率为100HZ 时,R 2=130K Ω R 3=130K Ω C=10nF 当频率为1000HZ 时,R 2=130K Ω R 3=130K Ω C=100nF 6))原件功能介绍:7))原件:元件 数量 元件 数量 LM741H 2 120K 电阻 2 10K 电阻 5 104陶瓷电容 1 25K 电阻 1 103陶瓷电容 1 1N4742A 2 单刀双掷开关1 锡线若干8))系统的电路总图:4、仿真及仿真结果仿真是通过Multisim软件进行的。
仿真电路测试过程:仿真频率为100HZ的方波和三角波的波形图: (幅值足够)仿真频率为1000HZ的方波和三角波的波形图:三角波U1 方波U2 100HZ峰-峰值/V 25.449 25.3821000HZ峰-峰值/V 25.442 79.2955.电路焊接过程与调试结果:1)方波-三角波发生电路的焊接步骤:a.把两块LM741CN集成运放和其他电子元件先放进电路板中布局,想清楚电路的路线,尽量少用跳线减少电路出现的问题;b.在焊接时注意集成运放的脚位,要对着来焊接,不能接错,如果要用到电解电容的话,也要分清电解电容的正负;c.按图接线,注意直流电源的正负及接地端,还有设立测试波形的两个输出点;d.焊接完后,要检查电路,再重新看一次,检查虚焊,不连通等的现象。
2)调试产生方波-三角波的电路:a.接入电源后,用示波器进行双踪观察;b.通过闭合开关选择合适的电容使三角波的幅值和方波的频率满足指标要求;c.观察示波器,波形稳定后记录数据。
设计数据:6.误差分析:误差的来源主要有系统误差(固有误差)和偶然误差(随机误差)。
而产生系统误差的原因有:仪器本身的缺陷、理论公式和测量方法的近似性、环境的改变和个人存在的不良测量习惯等。
系统误差来源有工具误差、装置误差、人身误差、外界误差、方法误差等。
偶然误差主要是某种未知的偶然因素对实验者、仪器、被测物理量的影响而产生的。
本设计中,器件实际测量参数跟理论参数不吻合是引起误差的最大原因。
如电路中的电阻R,它影响了输出电压的大小,如果R取合适值,三角波和方波输出波形不失真,而R出现少许改变的时候,会使输出电压和输出频率出现很大的误差.7.总结本设计作品的优点有如下几点:一.电路只有一个延迟环节,延迟时间短.二.由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变.本设计作品的不足之处主要是:一.方波输出电压小于2Vcc是因为运放输出极有PNP型两种晶体组成复合互补对称电路输出方波时,两管轮流截止或饮和导通,由于导通时输出电阻的影响,使方波输出度小于电源电压值.二.受运放影响,三角波传输特性区线性度差容易引起失真.以后可能改进的方案:在电路上加上保护电路,在三角波输出端加上滤波网络改善输出波形.8.心得体会:本次课程设计是在前导验证性认知实验基础上,进行更高层次命题的课程设计,是在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。
通过这次课程设计,我懂得了要完成一个电路的设计,理论基础是根基,实践操作是完成实物的重要部分,而创新能力则决定了一个电路的价值.因为设计一个电路,决不是简单地按课本的电路图进行焊接成型,我们要进行电路各个元件参数的计算,这个涉及我们所掌握的理论知识.元件的计算是设计中较为重要的一部分,计算准了,则设计出来的电路误差不大,否则,设计出来的电路性能指标跟要求相差甚远。
最困难的是当电路出现错误是,如何检测出错误之处,如何排除错误,它考验了我们如何运用理论知识和实际的调试的能力.另外,通过这次课程设计,我掌握了常用元件的识别和测试、熟悉了常用的仪器、了解了电路的连接、焊接方法、巩固了基础、提高了实际操作技能、并养成注重设计、追求创新的思维习惯.总而言之,这次课程设计极大的提高我在电子电路方面的各项能力。
9、主要参考书目:1、童诗白、华成英,《模拟电子技术基础》2、周誉昌、蒋力立,《电工电子技术实验》3、互联网相关文献波形发生器xwm-1 10附录:电路图:电路装配图,正面:电路装配图,反面:第11 页共11 页。