高考物理易错题精选-临界状态的假设解决物理试题练习题含答案一、临界状态的假设解决物理试题1.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点 【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
⑵设滑块与传送带发生相对运动的时间为t ,则0v gt μ=滑块与传送带之间产生的热量0()Q mg v t x μ=-解得Q = 8J⑶设滑块通过最高点C 的最小速度为C v 经过C 点,根据向心力公式2C mv mg R= 从B 到C 过程,根据动能定理2211222C B mg R mv mv -⋅=- 解得经过B 的速度50B v =m/s从A 到B 过程,若滑块一直加速,根据动能定理2102m mgL mv μ=-解得40m v =m/s由于速度v m <v B ,所以仅改变传送带的速度,滑块不能通过圆轨道最高点。
2.如图所示,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
P 是圆外一点,OP =3r ,一质量为m 、电荷量为q (q>0)的粒子从P 点在纸面内沿着与OP 成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O ,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。
【答案】(1)3Bqr ;(2)(332)v m ≤+或(332)v m ≥- 【解析】 【分析】 【详解】(1)设粒子在磁场中做圆周运动的半径为R ,圆心为O ',依图题意作出轨迹图如图所示:由几何知识可得:OO R '=()222(3)6sin OO R r rR θ'=+-解得3R r =根据牛顿第二定律可得2v Bqv m R=解得3Bqrv m=(2)若速度较小,如图甲所示:根据余弦定理可得()22211196sin r R R r rR θ+=+-解得1332R =+若速度较大,如图乙所示:根据余弦定理可得()22222296sin R r R r rR θ-=+-解得2332R =-根据BqRv m=得1(332)v m =+,2(332)v m=-若要求粒子不能进入圆形区域,粒子运动速度应满足的条件是(332)v m ≤+或(332)v m≥-3.小明同学站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m =0.3kg 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球在某次运动到最低点时,绳恰好达到所能承受的最大拉力F 而断掉,球飞行水平距离s 后恰好无碰撞地落在临近的一倾角为α=53°的光滑斜面上并沿斜面下滑,已知斜面顶端与平台的高度差h =0.8 m .绳长r =0.3m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)绳断时小球的速度大小v 1和小球在圆周最低点与平台边缘的水平距离s 是多少. (2)绳能承受的最大拉力F 的大小.【答案】(1)3m/s ,1.2m (2)12N 【解析】 【详解】(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以有v y =v 0 tan53°又v y 2=2gh ,代入数据得:v y =4m/s ,v 0=3m/s故绳断时球的小球做平抛运动的水平速度为3m/s ; 由v y =gt 1得:10.4s y v t g==则s =v 0 t 1=3×0.4m=1.2m(2)由牛顿第二定律:21mv F mg r-= 解得:F =12N4.铁路在弯道处的内、外轨道高低是不同的,已知内、外轨道连线与水平面倾角为θ,弯道处的圆弧半径为R ,若质量为m 的火车转弯的时速度小于临界转弯速度tan Rg θ 时,则( )A .内轨受挤压B .外轨受挤压C .这时铁轨对火车的支持力等于cos mgθ D .这时铁轨对火车的支持力小于cos mgθ【答案】AD 【解析】 【详解】AB .当车轮对内外轨道均无作用力时,受力分析:根据牛顿第二定律:2tan v mg m Rθ=解得:tan v Rg θtan Rg θ力,A 正确,B 错误;CD .当车轮对内外轨道均无作用力时,轨道对火车的支持力:cos mgN θ=当内轨道对火车施加作用力沿着轨道平面,可以把这个力分解为水平和竖直向上的两个分力,由于竖直向上的分力作用,使支持力变小,C 错误,D 正确。
故选AD 。
5.图甲为 0.1kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4m 半圆轨道后,小球速度的平方与其高度的关系图像。
已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计。
g 取210m/s ,B 为AC 轨道中点。
下列说法正确的是( )A .图甲中x =4B .小球从A 运动到B 与小球从B 运动到C 两个阶段损失的机械能相同 C .小球从A 运动到C 的过程合外力对其做的功为–1.05JD .小球从C 抛出后,落地点到A 的距离为0.8m 【答案】ACD 【解析】 【分析】 【详解】A .当h =0.8m 时,小球运动到最高点,因为小球恰能到达最高点C ,则在最高点2v mg m r=解得100.4m/s=2m/s v gr =⨯则24x v ==故A 正确;B . 小球从A 运动到B 对轨道的压力大于小球从B 运动到C 对轨道的压力,则小球从A 运动到B 受到的摩擦力大于小球从B 运动到C 受到的摩擦力,小球从B 运动到C 克服摩擦力做的功较小,损失的机械能较小,胡B 错误; C . 小球从A 运动到C 的过程动能的变化为22k 0111Δ0.1(425)J 1.05J 222E mv mv =-=⨯⨯-=- 根据动能定理W 合=n E k 可知,小球从A 运动到C 的过程合外力对其做的功为–1.05J ,故C 正确;D .小球在C 点的速度v =2m/s ,小球下落的时间2122r gt =440.4s 0.4s 10r t g ⨯=== 则落地点到A 点的距离20.4m 0.8m x vt '==⨯=故D 正确。
故选ACD 。
6.在上表面水平的小车上叠放着上下表面同样水平的物块A 、B ,已知A 、B 质量相等,A 、B 间的动摩擦因数10.2μ=,物块B 与小车间的动摩擦因数20.3μ=。
小车以加速度0a 做匀加速直线运动时,A 、B 间发生了相对滑动,B 与小车相对静止,设最大静摩擦力等于滑动摩擦力,重力加速度g 取210m/s ,小车的加速度大小可能是( )A .22m/sB .22.5m/sC .23m/sD .24.5m/s【答案】BC 【解析】 【详解】以A 为研究对象,由牛顿第二定律得:μ1mg =ma 0,得:a 0=μ1g =2m/s 2,所以小车的加速度大于2m/s 2。
当B 相对于小车刚要滑动时静摩擦力达到最大值,对B ,由牛顿第二定律得:μ2•2mg -μ1mg =ma ,得a =4m/s 2,所以小车的加速度范围为2m/s 2<a ≤4m/s 2,故AD 错误,BC 正确。
故选BC 。
7.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,圆形管道半径为R ,管道内径略大于小球直径,且远小于R ,则下列说法正确的是( )A .小球通过最高点时的最小速度min v gR =B .小球通过最高点时的最小速度min 0v =C .小球在水平线ab 以下的管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上的管道中运动时,内侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】AB .小球在竖直放置的光滑圆形管道内的圆周运动属于轻杆模型,小球通过最高点时的最小速度为零,故A 错误,B 正确;C .小球在水平线ab 以下的管道中运动时,沿半径方向的合力提供小球做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,故C 正确;D .小球在水平线ab 以上的管道中运动时,沿半径方向的合力提供小球做圆周运动的向心力,当速度非常大时,内侧管壁没有作用力,此时外侧管壁有作用力,当速度比较小时,内侧管壁有作用力,外侧管壁对小球无作用力,故D 错误。
故选BC 。
8.如图所示,质量为M 、中间为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m 的小铁球,现用一水平向右的推力F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽球心和小铁球的连线与竖直方向成α角。
则下列说法正确的是( )A .小铁球所受合力为零B .小铁球受到的合外力方向水平向左C .()tan F M m g α=+D .系统的加速度为tan a g α=【答案】CD 【解析】 【详解】隔离小铁球根据牛顿第二定律受力分析得tan F mg ma α==合且合外力水平而右,故小铁球加速度为tan a g α=因为小铁球与凹槽相对静止,故系统的加速度也为tan g α,整体受力分析根据牛顿第二定律得()()tan F M m a M m g α=+=+故AB 错误,CD 正确。
故选CD 。
9.现有A 、B 两列火车在同一轨道上同向行驶,A 车在前,其速度v A =10 m/s ,B 车速度v B =30 m/s.因大雾能见度低,B 车在距A 车600 m 时才发现前方有A 车,此时B 车立即刹车,但B 车要减速1 800 m 才能够停止. (1)B 车刹车后减速运动的加速度多大?(2)若B 车刹车8 s 后,A 车以加速度a 1=0.5 m/s 2加速前进,问能否避免事故?若能够避免则两车最近时相距多远?【答案】(1)0.25 m/s 2 (2)可以避免事故 232 m 【解析】 【分析】 【详解】(1)设B 车减速运动的加速度大小为a ,有0-v B 2=-2ax 1,解得: a =0.25 m/s 2.(2)设B 车减速t 秒时两车的速度相同,有v B -at =v A +a 1(t -Δt ) 代入数值解得t =32 s ,在此过程中B 车前进的位移为x B =v B t -212at =832 m A 车前进的位移为x A =v A Δt +v A (t -Δt )+12a 1(t -Δt )2=464 m , 因x A +x >x B ,故不会发生撞车事故,此时Δx =x A +x -x B =232 m.10.如图在长为3l ,宽为l 的长方形玻璃砖ABCD 中,有一个边长为l 的正三棱柱空气泡EFG ,其中三棱柱的EF 边平行于AB 边,H 为EF 边中点,G 点在CD 边中点处.(忽略经CD 表面反射后的光)(i )一条白光a 垂直于AB 边射向FG 边的中点O 时会发生色散,在玻璃砖CD 边形成彩色光带.通过作图,回答彩色光带所在区域并定性说明哪种颜色的光最靠近G 点; (ii )一束宽度为2l的单色光,垂直AB 边入射到EH 上时,求CD 边上透射出光的宽度?(已知该单色光在玻璃砖中的折射率为3n【答案】(i )红光更靠近G 点 (ii )l 【解析】 【详解】(i )光路如图:MN 间有彩色光带,红光最靠近G 点在FG 面光线由空气射向玻璃,光线向法线方向偏折,因为红光的折射率小于紫光的折射率,所以红光更靠近G 点(ii )垂直EH 入射的光,在EG 面上会发生折射和反射现象,光路如图所示在E 点的入射光,根据几何关系和折射定律,可得:160∠=︒sin 1sin 2n ∠=∠ 联立可得:230∠=︒在E 的折射光射到CD 面的I 点,由几何关系得:330∠=︒根据折射定律可得:13sin 3C n ==1sin 3sin 2C ∠=< 所以CD 面上I 点的入射光可以发生折射透射出CD 面.在E 的反射射光射经FG 面折射后射到到CD 面的J 点,由几何关系得:460o ∠=3sin 4sin 2C ∠=> 所以CD 面上J 点的入射光发生全反射,无法透射出CD 面 综上分析,CD 面上有光透射出的范围在GI 间 由几何关系得CD 面上有光透出的长度为l 。