当前位置:文档之家› 电力机车受电弓损伤的防护

电力机车受电弓损伤的防护

北京交通大学毕业设计(论文)题目:电力机车受电弓损伤的防护姓名:王吉民专业:铁道机车车辆工作单位:吉林铁道职业技术学院职务:学生准考证号: 0681 联系电话:设计(论文)指导教师:陆嘉发题日期:2012年10月20日完成日期:2012年 12月30日毕业设计(论文)评议意见书毕业设计(论文)任务书毕业设计(论文)题目:电力机车受电弓损伤的防护一、毕业设计论文内容本篇论文介绍了电力机车受电弓损伤的防护,并且全面的了解受电弓损伤的原因,通过对原因的分析,对受电弓进行防护。

使受电弓处于良好的工作状态。

二、基本要求了解受电弓的组成,工作原理,及故障的分析。

对受电弓在受到损伤的时候,该采取的措施。

并且能够熟练的掌握受电弓在平时维护的办法。

能够熟练的了解受电弓的零部件的组成以及对受电弓的防护和一定的修理能力。

三、重点研究问题1,电力机车受电弓损伤的原因2,电力机车受电弓损伤的部位3,电力机车受电弓的防护四、主要技术指标根据受电弓损伤的位置,初步的判断受电弓是有什么原因造成的。

然后对当时电力机车运行的状况进行了解,还有当时的天气状况。

和在平时的时候如何对受电弓进行防护。

五、其他需要说明的问题由于对受电弓损伤的理解不是很全面,本篇论文可能对某些观点的阐述不准确。

对某些观点的阐述可能有错误。

望给予批评指正。

下达任务日期:2012年10月 20 日要求完成日期:2012年12月 30日指导教师:陆嘉开题报告目前,正是我国铁路全面发展建设的时期,而电气化铁路又是因为其高效环保成为我国铁路的主要发展方向。

那么,受电弓是确保电力机车获取电能的重要环节,如果没有受电弓,电力机车就不能过取流,从而不能够使电力机车运行。

那么维护受电弓是现在摆在眼前的重要课题。

分析受电弓故障的原因,并且对受电弓的故障进行处理,并能更好的对受电弓进行日常的维护。

以免造成不必要的后果。

中文摘要通过学习电力机车TSG3型受电弓。

不仅了解它们的含义,也懂得它的组成及工作原理。

知道在受电弓发生故障的时候该如何去做。

或者在平时该如何去维护它,避免造成不必要的后果。

受电弓不仅仅是电力机车的一部分,它也是确保电力机车正常运行时重要的枢纽,起到相连接的功能。

在生活中,人与人之间分工不同,对社会的贡献程度也就不同。

所以,每个人对于社会来说都是有自身的意义与价值。

那么,对于事物来说也是一样的。

受电工虽然只是电力机车的一小部分,但是,它也起的重要的作用。

如果没有受电弓的话,电力机车就不能够受流,就不能将接触网上的电能输送到电力机车,使其运行。

从此,我们就可以看出,一个小小的受电弓对于电力机车能否正常运行来说,起着至关重要的作用。

那么,对于我们今后从事铁路方面工作的人来说,就应该掌握该如何了解受电弓,知道受电弓工作的原理。

和作为一个接触网工,在受电弓在损伤的时候,该如何去防护它,并且采取相关的措施。

关键词: TSG3/TSGC 受电弓故障原因分析目录第一章概述电气化铁路的牵引动力是电力机车,机车本身不带能源,所需能源由电力牵引供电系统提供。

牵引供电系统主要是指牵引变电所和接触网两大部分。

变电所设在铁道附近,它将从发电厂经高压输电线送来的电流,送到铁路上空的接触网上。

接触网是向电力机车直接输送电能的设备,是电气化铁路的动脉。

我国电气化铁路的牵引供电制式从一开始就采用单相工频(50赫)25KV交流制。

随着电力机车速度不断的提高,导致弓网事故的不断加剧。

已经严重的制约了高速铁路的发展,所以,本文从受电弓的组成,工作原理,受电弓的损伤及原因,和在损伤后该如何防护,做了详细的说明。

电力机车利用车顶的受电弓从接触网获得电能,牵引列车运行。

因此,受电弓是电力机车从接触网接触导线上受取电流的一种受流装置。

它通过绝缘子安装在电力机车的车顶上,是一种铰接式的机械构件。

当受电弓升起时,其滑板与接触网导线直接接触,从接触网导线上受取电流,并将其通过车顶母线传送至机车内部,供机车使用。

由于受电弓运行状态不良引发的事故频繁发生。

弓网故障发生率高,中断供电和行车时间长,而且不易查找,不利防范,不便组织抢修,给铁路运输安全造成了严重影响,是电气化铁路面临的一个有待解决的难题。

现阶段,如何更好的防护受电弓,确保受电弓良好的受流,正常的工作,已经成为了每一个接触网弓面对的必备课题,所以,对于我们来说,就更应该努力的去学习有关方面的知识。

第二章受电弓受电弓是从接触网向整个列车电气系统电以及输送再生制动能量的必要部件。

受电弓的升弓装置安装在底架上,主要装置由较轻的铝合金材料结构设计制造而成。

滑板安装在U型弓头支架上,其独特的结构使滑板在机车运行方各方向上的冲击,达到保护滑板的目的。

受电弓的组成受电弓一般由弓头、框架、底架和传动机构四部分组成, 而框架又由摆杆、上臂杆、下臂杆、支撑杆和平衡杆等杆件组成, 各杆件通过铰接连接在一起, 如图所示。

1.阻尼器2.底架3.升弓装置4.下臂杆5.平衡杆6.平衡臂7.弓头8.上框架9.拉杆10扇形板受电弓示意图底架支持框架, 通过绝缘子固定在车顶上,框架通过升弓装置支持弓头,传动机构作用于下臂来实现升弓动作。

气动升弓装置安装在底座上, 通过钢丝绳作用于位于下臂杆下部的扇形板, 从而实现升弓过程。

下臂杆、上框架和弓头采用不锈钢焊接而成。

碳滑板安装在弓头支架上,弓头支架垂悬在4个拉簧下方, 两个扭簧安装在弓头和上框架间。

受电弓快排阀的工作原理受电弓快排阀气路图所示,当机车风源气体通过气路分配座分配后由快排阀进气口进入到快排阀下腔,之后压缩气体会迅速地由快排阀膜片上的快排阀阻尼孔进入到快排阀上腔,受电弓ADD气路和压力开关气路等三个支路,这样快排阀上下腔气压逐渐达到一致,由于快排阀膜片上腔的压力接触面积比下腔的压力接触面积大,快排阀上腔给膜片的压力会比下腔大,这样快排阀膜片就可以封住快排阀下腔通往大气的通路,很好地保证下腔的气密性,从而保证受电弓快排阀的正常工作。

当受电弓碳滑板受损出现泄漏时,受电弓的ADD气路的压力下降,快排阀下腔的压力将大于快排阀上腔的压力,快排阀膜片将打开快排阀下腔通往大气的通路,受电弓的工作压力将快速下降,导致受电弓快速降弓。

与此同时压力开关由于气压下降而动作给出信号,由机车系统配置发出分断主断路器的指令,以保证在受电弓降弓开始之前,机车能够先行切断机车电源,避免受电弓带电拉弧。

受电弓气路工作原理在HXD1型电力机车运用过程中,曾经发生受电弓升弓过程中快排阀排风不止的故障现象,重新拆解组装好快排阀后,受电弓气路又可以正常升降弓。

为了分析其根本原因,我们首先要了解受电弓的充风过程(受电弓气路工作原理见图2),司机室给出升弓指令后,升弓电磁阀得电,机车压缩空气会通过气阀板上的空气过滤阀、升弓时间调节阀,精密调压阀(受电弓工作气压整定值为~ bar) 安全阀、降弓时间调节阀,之后到达受电弓上的气路分配座。

气路分配座将压缩气体分为两条气路:一路给受电弓的两个升弓气囊供气。

另一路给快排阀供气当压缩气体到达快排阀后,快排阀又会将压缩气体分为两路:一路给受电弓ADD,一路给压力开关。

从图 2 可以看出,如果快排阀之前的受电弓气路出现任何问题,快排阀都不会出现排风的现象,只有当快排阀后面的ADD气路和压力开关气路出现泄漏或由于杂质堵塞快排阀阻尼孔的情况下才能导致快排阀上腔气压小于下腔,受电弓快排阀才会排气,当快排阀出现排风现象时,就会将受电弓升弓气囊中的压缩气体一起排向大气,这样受电弓就会迅速降弓。

因此,我们从受电弓气路工作原理可以得出结论,造成快排阀异常排气有以下两种原因:1、ADD 气路及压力开关气路泄漏。

当ADD气路或压力开关气路的泄漏量大于膜片上阻尼孔的补充量时,快排阀上腔的气压就会小于下腔气压,这样快排阀膜片将向上推动,导致快排阀膜片无法保证与下腔的气密性,受电弓气囊中的压缩空气就会通过快排阀下腔排向大气,从而导致受电弓的自动降弓。

出现这种情况时,只要检查受电弓ADD气路或压力开关气路的泄漏情况,这种快排阀排风的故障也会比较容易排查。

2、气路中的杂质堵塞快排阀膜片上的阻尼孔。

受电弓快排阀阻尼孔是一个直径 0.8 mm 的小孔,当压缩空气中出现杂质时,小孔就容易堵塞。

当受电弓快排阀阻尼孔被堵后,快排阀下腔中的压缩空气就无法通过阻尼孔进入到快排阀上腔到达ADD气路和压力开关气路,这样快排阀下腔中的气压将大于上腔气压,快排阀膜片无法保证与下腔的气密性,快排阀就会迅速排气造成受电弓的自动降弓。

当出现杂质堵塞阻尼孔的时候,拆解快排阀并检查快排阀下腔的清洁状况可能会发现有杂质残留。

但快排阀排风也有可能会将下腔中的杂质排出大气,这样拆解快排阀可能无法检查到快排阀下腔的杂质。

受电弓常见故障原因分析1、静态接触压力偏小接触压力偏小,则接触电阻增大,功率损耗增加,机车运行时易产生离线和电弧,从而导致接触导线和滑板的电磨损增加;在电气化铁路牵引供电系统中,受电弓在运动过程中产生与接触导线脱离的现象。

这种现象除了使负载电流不连续,影响机车的受流质量外,还会产生电弧现象。

这种弓网拉弧除了使车载电器承受高频振荡过电压外,还会烧蚀接触导线及受电弓滑板,轻者使接触导线使用寿命缩短,重者烧断接触导线,造成重大事故。

2、静态接触压力偏大接触压力偏大,则机械磨损增加,甚至造成滑板局部拉槽,进而造成接触导线弹跳拉弧,以致刮弓。

刮弓是指因接触网异常,而把机车的受电弓损坏。

刮弓是接触网和受电弓的一重大故障。

如果错给信号将电力机车放入无电线路,机车乘务员发现不及时没采取降弓措施就容易造成刮弓。

防止刮弓事故对于机务部门来讲从两方面来考虑:一是机车整备作业时对机车受电弓进行质量检查,不使病弓出段;另一方面是在机车运行中密切注视接触网状态,发现问题及时采取降弓措施,特别是在出入车站,道岔,调车作业中,分相分段绝缘处以及天气恶劣时尤应注意。

因此,要求受电弓在其工作高度范围内有一个较为合适的、基本不变的接触压力,这个接触压力由受电弓机械结构和各部分参数决定。

适当的静态接触压力可以使受电弓与接触网导线正常接触,减少离线,克服风和高速气流及轮轨传来的机械振动的影响,保证良好的受流特性。

3、受电弓软连线截面形状不当造成的断股软连线由很多细导线编织而成,由于动车组在运行中其动作次数比较频繁,如果软连线的截面形状和连接方式不当,就会造成软联线逐渐折损。

目前,软连线截面形状为扁平矩形结构,在相同的截面面积和空气动力的情况下,该截面结构软连线所受的压力值较高,而从材料力学角度分析,该结构的抗弯曲和剪切许用应力值又较小,其边缘部位又存在一定的应力集中,造成软连线容易断股。

软连线断股后,由于单位面积电流的增大,导致软连线及连接座的温度升高,从而使接触电阻增大,造成恶性循环,致使软连线热脆性增强。

相关主题