当前位置:文档之家› 门式起重机毕业设计说明书

门式起重机毕业设计说明书

西南交通大学峨眉校区毕业设计说明书论文题目:门式起重机设计—起升机构与小车运行机构设计系部:机械工程系专业:工程机械 .班级:工机二班学生姓名:毛明明学号:指导教师:冯鉴目录第一章门式起重机发展现状4型吊钩门式起重机的用途 (5)钢丝绳的计算 (8)滑轮、卷筒的计算 ........................................................................................减速机的选择 (12)车轮的计算 (24)第一章门式起重机发展现状门式起重机是指桥梁通过支腿支承在轨道上的起重机;它一般在码头、堆场、造船台等露天作业场地上;当门式起重机的小车运行速度大、运行距离长、生产效率高时,常改称为装卸桥;港口上常用的机型有:轨道式龙门起重机、轮胎式龙门起重机、岸边集装箱起重机、桥式抓斗卸船机等;当桥架型起重机的跨度特别大时,为了减轻桥架和整机的自身质量,常改用缆索来代替桥架,供起重小车支承和运行之用;起重机械是用来升降物品或人员的,有的还能使这些物品或人员在其工作范围内作水平或空间移动的机械;取物装置悬挂在可沿门架运行的起重小车或运行式葫芦上的起重机,称为“门架型起重机”;进入21世纪以来,我国的造船工业进入了快速发展的轨道,各大主力船厂承接的船舶吨位从几万吨发展到十几万吨,年造船能力也普遍跃上百万吨水平,造船模式也相继从船台造船转向船坞造船,大型造船门式起重机的需求也大幅度增加;随关中船长兴、中船龙穴、青岛海西湾、舟山金海湾、靖江新时代、太平洋集团扬州大洋等大型国营和民营造船基地的建设,大型造船门式起重机也进入了一个大型集中建造的黄金时期,起重机的提升能力从600t上升到900t,跨度从170米增加到239米,已经建成的和在建的大型造船门式起重机有几十台;门式起重机作为一种重要的物料搬运设备,在造船领域中的重要作用日益显现;随着经济的发展,它不仅在国民经济中占有重要的位置,而且在社会生产和生活的领域也不断扩大;从20纪后期开始,国际上门式起重机的生产向大型化、多功能化、专用化和自动化的方向发展;第二章MG型吊钩门式起重机的概述MG型吊钩门式起重机属双主梁通用门式起重机,也称A型双梁门吊,由桥架、大车运行机构、小车、电气设备等部分构成;本起重机是按GB/T14406-1993通用门式起重机设计制造,常用起重量10-50t,工作环境为-20- 40;C,工作级别A5、A6两种;本起重机小车导电采用软缆导电,大车采用滑触线或电缆卷筒方式供电,操作方式有地面控制、操纵室控制、遥控三种形式供用户选择;标准操纵方式为室控,全部机构均在司机室操纵并有防雨设备;适用于露天仓库、货料场、铁路车站、港口码头各种物料的装卸和搬运工作;本起重机特点:桥架采用箱形梁焊接结构,起重机运行平衡,抗风性能好,各机构设有安全保护装置;MG 型吊钩门式起重机的结构及组成箱体双梁门式起重机图1有一个由两根箱型主梁和两根马鞍构成的双梁门架,大车运行机构和电气设备等;在门架上运行起重小车,可以起吊和水平搬运各类物件;箱型双梁结构具有加工零件少、工艺性能好、通用性好及机构安装检修方便等一系列优点,因而在生产中得到广泛采用;构成门式起重机的主要金属结构部分是门架,它矗立工作场所的轨道上,并沿轨道前后运行;除门架主梁和马鞍外,它的主要组成部分还有小车主、副起升机构、小车运行机构和小车架,可以带着吊起的物品沿门架上的轨道左右运行;于是门架的前后运行和小车的左右运行以及起升机构的升降动作,三者构成的立体空间范围是门式起重机吊运物品的服务空间;图门式起重机MG 型吊钩门式起重机的工作原理门式起重机,一般都具有三个机构:即起升机构起重量大的有主副两套起升机构、小车运行机构和大车运行机构;按照正常工作程序,从起吊动作开始,先开动起升机构,空钩下降,吊起物品上升到一定高度,然后开动小车运行机构和大车运行机构到指定位置停止;在开动起升机构降下物品,然后空钩回升到一定高度,开动小车运行机构和大车运行机构式起重机回到原来的位置,准备第二次吊运工作;每运送一次物品,就要重复一次上述过程,这个过程通常称为一个周期;在一个周期内,各机构不是同时工作的;有时这个机构工作,别的机构停歇,但每个机构都至少作一次正向运转和一次反向运转;1.1 MG 型吊钩门式起重机的用途它适用于各种工矿企业,交通运输及建筑施工等部门的露天仓库、货场、铁路、车站、码头、建筑工地等露天场所;做装卸与搬运货物、设备以及建筑构件安装使用;MG 型吊钩门式起重机的主要技术参数主要技术参数起重量:主钩T Q 45=主,跨 度: m L 42.9=;起升高度:主钩m H 40=主;工作制度:主起升工作级别:重级)40%=JC ;小车运行工作级别:中级)25%=JC ;大车运行工作级别:中级)25%=JC ;工作速度:主起升速度:min /18m V =轻载;min /9m V = 重载;小车运行速度:min /5.12-25.1m V =;大车运行速度:min /5.23-35.2m V =;小车轨距: m L 5.2=;第三章 起升机构的计算45吨双梁门式起重机它主要由主起升机构、小车运行机构和小车架所成;小车采用四个走轮支撑的起重小车见图2-1图2-1门式起重机起升机构传动简图主起升机构的计算参数1、主要参数与机构的布置简图如图3-3已知:起重量:kg Q 45000=;工作类型:重级)40%=JC ;最大起升高度:m H 40=,地面以上m 9,地面以下m 31;起升速度:重V =min /9m 重载;轻V =min /18m 轻载;钢丝绳的计算:根据起重机的额定起重量Q=45吨,查起重机设计手册表8-2选择双联起升机构滑轮组倍率为M=4,起升机构钢丝绳缠绕系统如图2-2所示;图2-2 钢丝绳缠绕系统1 钢丝绳所受最大静拉力;式中 Q ——额定起重量,kg Q 45000=;钩G ——取物装置自重,kg G 5.1074=钩吊挂挂架的重量一般约占额定起重量的2~4%;这里取吊钩挂架重量为kg 5.1074;m ——滑轮组倍率,4=m ;组η——滑轮组效率,975.0=组η;2 钢丝绳的选择:所选择的钢丝绳破断拉力应满足下式:而 丝绳S S ∑⨯=α式中:绳S ——所选钢丝绳的破断拉力;绳n ——钢丝绳安全系数,对于重级工作类型取绳n =6;丝S ∑——钢丝绳破断力总和;α——折减系数,对于绳6Χ37+1的钢丝绳α=;对于绳6Χ19+1的钢丝绳α=;有上式可得:查钢丝绳产品目录表可选用:钢丝绳6W19-26-7X7-170-I-ZGB1102-74的丝S ∑= ,所以选择的钢丝绳满足强度要求,钢丝绳的直径绳d =26mm;滑轮、卷筒的计算1 滑轮、卷筒最小直径的确定为确保钢丝绳具有一定的使用寿命,滑轮、卷筒名义直径钢丝绳卷绕直径应满足下式:绳d e D )1(-≥;式中 e ——系数,对于重级工作类型的门式起重机,e=32;D ——是卷筒和滑轮的名义直径;d ——钢丝绳的直径mm ;所以 80626)132(=⨯-=D mm取卷筒、滑轮的名义直径)(1000mm D =;2 卷筒长度和厚度的计算图2-3图2-3 双联卷筒的主要尺寸卷筒的长度由下式计算:光双L L L L L +++=)(2210;而 t Z D m H L ax 〉+〈=00m 0π 式中 max H ——最大起升高度为m 9地面以上,m 31地面以下取max H =m 40;0Z ——钢丝绳安全圈数,取0Z =3 ;t ——绳圈节距30~284~2=+=)(绳d t ,取mm t 30=;1L ——根据结构确定卷筒空余部分,mm t L 15051==;2L ——固定钢丝绳所需要的长度, 9032==t L ;0D ——卷筒的计算直径按缠绕钢丝绳的中心计算,mm d D D 10262610000=+=+=绳;参考同类型起重机取0D =1020mm光L ——双联卷筒中间不切槽部分长度,根据钢丝绳允许偏斜角确定对于螺旋槽卷筒tgα101≤考虑到该取物装置的特殊性参考同类型起重机取:光L =440mm 0L ——卷筒半边卷绕部分的长度;卷筒长度双L =440)150901588(2+++⨯=mm 4096,取双L =4100mm,取卷筒材料采用200HT ,其壁厚可按经验公式确定30~26)10~6(02.0=+=D δ,取 mm 30=δ;3 卷筒转速式中重V ——起升速度,重V =min /9m 重载;h i ——滑轮组倍率;4 强度的计算卷筒壁主要受钢丝缠绕所产生的压缩应力;此外还承受扭转和弯曲; 压缩应力的计算:式中max S ——钢丝绳工作时最大张力;[]y σ——许用压应力,[]y σ=25.4byσ铸铁卷筒;by σ——抗压强度极限,by σ=750MPa ;故满足使用条件;由于l>3D,需要计算有弯曲力矩产生的拉应力因扭转应力甚小,一般可忽略不计; WM W t =σ合成应力应满足:[][][]t y y t t t σσσσσσ≤+=max' 式中 x w l S M max =——卷筒所受的弯矩,x l =1830mm ;W ——卷筒断面系数,W= δδ2)(-D ;[]t σ——许用拉应力,[]5bt σσ= 铸铁卷筒;b σ——抗拉强度极限,b σ=200Mpa ;故满足使用要求;根据静功率初选电机1 起升机构静功率计算式中0η——起升机构的总效率,V ——起升速度重载;2 初选电动机功率j d e P k N ⨯≥;式中 e N ——电动机额定功率;d k ——起升机构按静功率初选电动机的系数,由1表6—1取d k =;KW KW P k N j d e 05.675.7490.0=⨯=⨯=;查电机产品目录附录28,在40%=JC 时选择接近的电动机6315-M YZB 型,额定功率N=KW 110,转速n=min /965r ,转动惯量2GD =218.6kgm ;减速机的选择1 减速机传动比卷电n n i =0;式中 n ——电机机的额定转速min)/(r ;0n ——卷筒的转速min)/(r ;2.862.119650===卷电n n i ;2 标准减速器的选用根据传动比kw N i 110,2.860==电机功率电动机的转速min 965r n =、工作级别重级,从减速器产品目录2附录26可选用VIIC D QJS ---80630减速器,传动比i=80,最大允许径向载荷为][F =N 150000,减速器输出轴端的瞬时允许转矩=][T m N ⨯209000;3 验算减速器被动轴端最大径向力轴端最大径向力应满足:F max =][)(21max F G aS t ≤+; 式中max S ——钢丝绳最大静拉力)(N ;t G ——卷筒重力)(N ;a ——卷筒上卷绕钢丝绳的分支数,a=2;][F ——减速器输出轴端的允许最大径向载荷N;F max =N N 1500005.59883238725.57947≤=+满足要求; 4 减速器输出轴承受短暂最大扭矩校核减速器输出轴承受短暂最大扭矩应满足: )]([75.000m ax m N T i T T e ⨯≤=ηψ;式中e T ——电动机的额定扭矩,e T =9550n N E =955096505.67=)(m N ⨯ 0i 、0η——减速器的传动比和效率,0i =;0η=; max ψ——当JC%=40%时电动机最大力矩倍数,max ψ=;][T ——减速器输出轴端允许的最大短暂扭矩;故满足要求;5 实际起升速度的验算实际起升速度为:%15%3.3997.89<=-=∆V 满足要求 制动器的选择起升机构的制动转矩应满足:式中:z T ——制动器制动力矩)(Nm ;z K ——制动安全系数取z K = ;i ——起升机构总传动比,其值i =h i 0i ;η——起升机构总效率,其值η=h ηi η0η;根据以上计算的制动转矩,从制动器产品目录选用YWZ-400/90制动器,制动轮直径为400毫米,最大制动力矩为1600Nm ;因为 z z K T ≥iD G Q 2)(00η+ 故满足使用要求; 联轴器的选择带制动轮的联轴器通常采用齿轮形联轴器,依据所传递的扭矩、转速和被连接的轴径等参数选择联轴器,起升机构联轴器应满足:式中:T ——所传递的扭矩的计算值)(Nmmax ∏T ——按第二类载荷计算的传动轴的最大扭矩;对高速轴,max ∏T =~n m T λ ,m λ为电动机转矩允许过载倍数,n T 为电动机额定转矩,n T =9550nP n )(Nm ,n P 为电动机额定功率,n 为电动机的额定转速. ][T ——联轴器许用扭矩)(Nm ;1k ——联轴器重要程度系数;对起升机构,取;3k ——角度偏差系数在此取;max 31∏=T k k T =2.685896511095505.28.075.1=⨯⨯⨯⨯⨯)(Nm 根据以上计算选用S3408带制动轮的齿轮联轴器,联轴器允许最大扭矩为)(Nm ,制动轮直径为400毫米,飞轮矩为2kgm ,并选出S2482型联轴器,其允许扭矩)(Nm ,飞轮矩为2kgm ;因为[]T T >故满足使用要求;起动和制动时间验算1 起动时间验算:][)(55.9][q j q q t T T J n t ≤-⨯= s 式中:q T ——电动机平均起动转矩)(Nmj T ——电动机静阻力矩,按下式计算;] [q t ——推荐起动时间][J ——机构运动质量换算到电动机轴上的总转动惯量2kgm ,按下式计算: ][J =J d +J e +η⨯⨯⨯222040i a D Q 2kgm 式中: J d ——电动机转子的转动惯量2kgm ;在电动机样本中查取,如样本中给出的是飞轮矩2GD ,则按g GD J 42=换算; J e ——制动轮联轴器的转动惯量2kgm)(55.9][j q q T T J n t -⨯==s 5.1)91.02.864020.181.95.4607496511095508.1(55.9]91.0)42.86(240020.181.95.46074)81.946.418.6(15.1[965222=⨯⨯⨯⨯-⨯⨯⨯⨯⨯⨯⨯⨯+⨯+⨯ 门式起重机起升机构的起动时间一般应控制在1—2秒间,故起动时间是符合要求的;2 制动时间验算满载下降制动时间:式 式中: 'n ——满载下降时电动机转速min /m ,通常取'n =n ;z T ——制动器制动转矩;j T '——满载下降时制动轴静转矩,按下式计算:]['J ——下降时换算到电动机轴上的机构总转动惯量2kgm ,按下式计算;]['J =J d +J e +η222040i a D Q ⨯⨯2kgm z t []——推荐制动时间s,可取z t []=] [q t)(55.9]['''j z z T T J n t -⨯= =s 44.1)2.862291.0020.181.95.460741800(55.9]2.8644091.0020.181.95.46074)606.418.6(15.1[9651.122=⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯++⨯⨯⨯ 门式起重机起升机构的制动时间一般应控制在和起动时间相等,故制动时间是符合要求的;3 起动加速度的验算 门式起重机起升机构的起动加速度一般小于22.0s m ,故平均加速度满足要求的; 电动机过载能力效验起升机构电机过载能力按下式进行效验:式中:n P ——在基准接电持续率时的电动机额定功率为110kW ;u ——电动机台数为1;m λ——基准接电持续率时的电动机转矩的允许过载倍数取;H ——考虑电压降及转矩允差以及静载荷试验超载的系数;绕线异步电机取,笼型异步电动机取,直流电机取.ηλ1000Qv u H m ⨯⨯=1106.626091.010005.2981.95.460741.2<=⨯⨯⨯⨯⨯⨯kW 满足要求; 电机发热验算电机发热效验合格应满足:式中:P ——电动机工作的接电持续率JC 值、CZ 值时的允许输出功率kW ,查取得kW 5.70S P ——工作循环中,稳态平均功率kW ;η——起升机构总效率;G ——稳态负载平均系数;其计算公式为S P =ηu Qv G 1000⨯ S P =05.676091.01000981.95.460478.0=⨯⨯⨯⨯⨯ kW 满足要求; 第四章 小车运行机构的计算主要参数与机构的布置简图图3-1 小车运行机构简图1——电动机;2——制动器;3——减速器;4——传动轴; 5——联轴器;6——角轴承箱;7——车轮;双梁门式起重机的小车,起重量在5吨至50吨范围内一般均由四个车轮支撑,其中两个车轮为主动轮;主动车轮由小车运行机构集中驱动;主要参数起重量: Q=45t ;工作制度: 中级JC%25;小车运行速度: V 小车=min ;3-8偏根据其中小车架的平衡方程式,可分别求出主动轮和从动轮的轮压:图3-8计算简图主动轮:式中 1P ——主动轮轮压)N (; τK ——小车轮距,mm K 2500=τ;满载)(179225001012502000013505.4607410max 1KN P =⨯⨯⨯+⨯⨯=; 空载)(5011KN P n m =;同理,可得从动轮轮压2P 为:满载)(156225001012502000011505.4607410max 2KN P =⨯⨯⨯+⨯⨯=; 空载)(5012KN P n m =;电动机的选择1、运行阻力的计算:j F ——静阻力 ; m F ——摩擦阻力 ; p F ——坡道阻力; ① 起重机或小车满载运行阻力时的最大摩擦阻力:Q ——起升载荷N ; G ——起重机或运行小车的自重载荷;f ——流动摩擦系数mm ; μ——车轮轴承摩擦系数;d ——与轴承配合外车轮轴的直径mm ; D ——车轮踏面直径; β——附加摩擦阻力系数 ; W ——摩擦阻力系数;② 满载运行时最小摩擦阻力:③空载运行时最小摩擦阻力:()D G Q F df 2m2μ+=由①得: ()N W G Q F 9750015.020********g m =⨯+=+=)( 由②得: ()N W G Q F 5.204750065015.03.022*********g m1=⨯+⨯⨯+=+=)( 由③得: ()N W G Q F 8.63350065015.03.02200005.1074g m2=⨯+⨯⨯+=+=)( 坡道阻力: N G Q F 1274002.08.92000045000p =⨯⨯+=+=)()(ι ι——坡道阻力系数与起重机类型有关,桥架上的小车取为; 最大静阻力:N F F F 1102412749750p m j =+=+=电机静功率: W 52.29.01000605.1211024m 1000v 0j K F P j =⨯⨯=⋅=η 0v ——运行速度; η——机构传动效率; m ——电机个数;2、电机初选: i d P K P ⋅=d K ——考虑到电动机起动时惯性影响的功率增大系数,门式起重机小车运行机构取为;选取:YZB160M-8 ; 功率: ; n=730r/min ;转动惯量2m g ⋅K ; 最大转矩倍数;电动机发热校验: S P P ≥P ——电动机工作的节点持续率JC 值、CZ 值时的允许输出容量KW ;查表取P=S P ——工作循环中负载的稳态功率KW ;G ——稳态负载平均系数,取为;减速器的选择1、由电动机转速与车轮转速确定减速器的传动比为:参考QJ 型起重机减速器用于运行机构的选用方法:j P ——减速器的计算输入功率KW ;8ϕ——刚性动载系数,8ϕ=~;n P ——基准接电持续率时,电动机额定功率KW ;I ——工作级别,I=1~8;[]P ——标准减速器承载能力表中的许用功率KW ;查标准:选ZSCD-600+125-I-2 公称传动比i=;实际传动比i=min ; 输出轴转矩:36000m ⋅N ;高速轴许用功率:26KW ;[]P =26KW j P >速度偏差: %10%08.000<=-=∆V V V V 小车(空)符合要求;联轴器的选择:高速轴:=1c T t n T T n ≤⨯⨯81ϕm N ⨯式中 1c T ——计算扭矩;1n ——联轴器安全系数,取;8ϕ——刚性动载系数,取~;n T ——电动机额定扭矩m N ⨯m 12.98n9550n ⋅==N P T n T t ——联轴器许用扭矩Nm ; 选用TLL 2带制动轮联轴器:T t =300Nm制动轮直径mm 2000=D 转动惯量=2m g 15.0⋅K ;低速轴: t n c T T n i T ≤⨯⨯⨯⨯=812ϕηi ——电动机至低速联轴器的传动比 73.91ni ==小车轮V D π;选用2429S 联轴器; 许用扭矩:800Nm ;制动轮直径mm 2000=D ; 转动惯量=2m g 44.0⋅K ;制动器的选用:P F ——坡道阻力; 1m F ——满载运行时最小摩擦阻力;'m ——电动机个数,一般m='m ;z t ——制动时间;1J ——电动机转子转动惯量)(2m g ⋅K ; z T ——电动机轴上制动轮和联轴器的转动惯量)(2m g ⋅K ;V ——圆形速度;选取YWZ-200/25;推动器型号:YT1-252-4 ;制动力矩200m ⋅N ; 电动机起动时间与平均加速度的验算1 满载上坡时式中: mq T ——电动机平均起动转矩)(Nmn ——电动机额定转速 n=730r/minJ ——机构运动质量换算到电动机轴上的总转动惯量2m kg *,按下式计算:J ∑=kJ 1+J 2+η⨯⨯+22)(3.9n v G Q 2kgm m ——电机个数 j T ——电动机静阻力矩,按下式计算:j F ——运行静阻力 ; D ——车轮踏面直径;i ——减速器的传动比 ; η——机构的传动效率;s 6~4s 6.553.3412.9855.976.4730≤=-⨯⨯=)(t 满足 2 起动平均加速度: 式中:a ——起动平均加速度)/(2s m v ——运行机构的稳定运行速度)/(s mt ——起动时间)(s2m/s 037.06.5605.12=⨯=a 098.0<2/s m ,满足要求; 运行打滑验算:1. 起动时:])(500[2000)(21min a Di J J k T D i P D d n mq z ⨯+-⨯≥⨯+ημϕ2. 制动时:≥⨯-min )(P D d n z μϕη⨯D i 2000])(500[21z z a Di J J k T ⨯+- m in P ——驱动轮最小轮压)(N ;mq T ——打滑一侧电动机的平均起动转矩Nm ;k ——计及其他传动飞轮矩影响的系数,K=~;ϕ——附着系数,对室外工作的起重机取;z n ——附着安全系数取~;d ——轴承内径;D ——车轮踏面直径;μ——轴承摩擦系数取;a ——起动平均加速度)/(2s m ;z T ——打滑一侧的制动器的制动转矩Nm ;z a ——制动平均减速度)/(2s m z a zt V =; 代入数据得:起动时左边≥ 满足要求;制动时右边≥ 满足要求;车轮计算根据轮压、小车运行速度、工作类型初选:车轮:踏面直径D=500mm,材料ZG310-570 HB 300≥ 配合轴径d=65mm1. 车轮的计算轮压(1) 疲劳计算时的等效起升载荷由下式确定:式中 等效工ϕ——等效静载荷系数,等效工ϕ=起Q ——起升载荷质量,起Q =根据等效起升载荷却低昂车轮的等效轮压等效P ,然后再由下式确定车轮的计算轮压:式中等效P ——小车在门架上位于地下位置一般取为离支点1/4跨度处时,根据门架自重、小车自重及等效起升载荷计算的最大轮压:1K ——等效冲击系数,1K =1; 根据38.18.920000270918/=⨯=总等效起G Q ,查得8.0=γ; (1) 强度校核时的最大计算轮压 式中max P ——满载大车最大轮压,N P 179000max =;Ⅱϕ——动力系数,取0.1=Ⅱϕ;2. 车轮踏面应力接触疲劳计算(1) 车轮点接触的允许轮压 32min max c P P P += max P ——起重机正常工作时的最大轮压;m in P ——起重机正常工作时的最小轮压; 点接触:21322c mC C R K P ⋅⋅⋅≤ 2K ——与材料有关许用点接触应力常数,2K =2m /N ,钢制车轮按1表5-2选取;R ——曲率半径,取车轮曲率半径与轨面曲率半径中之大值,R=300mm ;m ——由轨道顶面与车轮的曲率半径之比所确定的系数,按1表5-5选取;1C ——转速系数,按1表5-3选取1C =;2C ——转速系数,按1表5-3选取2C =;N P 75.156093111.14.03001.013600032c =⨯⨯⨯≤= 满足; (2) 车轮踏面强度校核式中 max 点σ——最大许用接触应力,当320≥HB 时,[]40000~24000=点σ2/cm kg ;其余符号意义同前;符合要求;3、车轮轴的计算1轴受纯弯曲时的应力 式中4max LP M ⨯=计——两侧轴所承受的计算弯矩,式中L ——车轮两个轴承的间距,mm L 20=;弯W ——轴的抗弯断面模数 所以2/4.178027.5089500cm N ==弯σ 2轴受纯扭矩时的应力 式中ηψ⨯⨯⨯=i M M 额Ⅰ扭——车轮轴所承受的计算扭矩,其中Ⅰψ——第一类载荷的动力系数,其余符号意义同前;3 弯曲应力和扭转应力合成的计算应力为式中β——将扭转应力换算为弯矩应力的系数,由于弯曲和扭转均对称,所以1=β;因为轴在弯矩、扭矩作用时,大小和方向均发生不变化,是对称循环;[]1-弯σ——对称循环弯曲许用应力,对轴采用45号钢则:式中K ——应力集中系数,2=K ;n ——安全系数,4.1=n2.强度计算1受纯弯曲时的计算应力式中max 弯M ——用最大轮压第二类载荷计算轴的最大弯矩,cm N L P M •=⨯=⨯=895004201790004max max 计弯; 弯W ——轴的抗弯断面模数,2受纯扭转时的计算应力式中max 扭M ——第二类载荷计算情况所产生的扭矩,扭W ——抗扭断面模数,3弯曲应力和扭矩应力合成的计算应力式中β——将扭转应力换算为弯曲系数, 1=β;[]弯σ——弯曲许用应力 因为[]弯σσ<所以强度计算通过;第五章 总结本次课程设计是在学习机械知识中一次非常难得的理论与实际相结合的机会,通过这次比较完整的毕业设计,我摆脱了单纯的理论知识学习状态和实际设计的结合,锻炼了我的综合运用所学的专业基础知识的能力,同时也提高我查阅文献资料、设计手册、设计规范以及电脑制图等其他专业能力水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,得到了丰富的经验;这是我们都希望看到的也正是我们进行课程设计的目的所在;此次设计的内容主要是对起重机的大车运行机构和副起升机构设计;说明书首先介绍了此设计的选题,明确本设计的研究目的和意义,最后通过思考与讨论,最终确定本设计的研究方案;在设计过程中详细说明了大车运行机构和副起升机构的计算和选材,通过查阅相关方面的书籍,运用大量有关机械设计的相关知识,让我对机械方面的知识有了更深一层的认识,使我懂得如何灵活运用所学的知识应用到实际中,这对我将来的工作或学习都有很大的帮助;参考文献1 陈道南,等. 起重运输机械. 冶金工业出版社, 2000.2 陈道南,盛汉中.起重机课程设计. 冶金工业出版社, 1982.3 起重机设计手册编委会.起重机设计手册. 机械工业出版社,1980.4 周开勤.机械零件手册.高等教育出版社, 2000.5 陈国璋,等.起重机计算实例.中国铁道出版社,2000.6 徐起贺,刘静香.机械设计基础.机械工业出版社 2000.7 濮良贵.机械零件第八版.北京:高等教育出版社,2006.8 朱龙根.简明机械零件设计手册.北京:机械工业出版社,2001.9 倪庆兴,王焕勇.起重机械.上海:上海交通,1990.10 胡宗武,顾迪民.起重机设计计算.北京:北京科技出版社,1988.11 倪庆兴,王殿臣.起重运输机械图册.北京:机械工业出版社,1992.12 黄祥瑞.可靠性工程.北京:清华,1990. 10 黄宗益.工程机械CAD.上海:同济,1991. 13 濮良贵,纪名刚.机械设计.北京:高等教育出版社,14 Boyes W E. Jigs and Fixture. America.15 Handbook of Machine tools Manfred 15 John . Machine tool。

相关主题