掘进机液压培训课件
52
液压系统故障诊断的基本方法
(1)核实故障的现象和征兆 (2)确定故障诊断的参数 (3)分析确定故障可能产生的位置和范围、对检查
结果参照液压原理进行分析,减少误诊。
注意
在未确定故障的位置与范围之前,严禁盲目拆卸、解体、 随意调解液 压元件。使液压故障括大化及产生新的故障,造成液压故障复杂化。
53
24
25
26
27
28
被密闭压力能 通过钢管或软 管向前迅速传 递。其缘故是 液几乎没有被
压缩。
29
30
31
32
33
34
压力与流量
当液压系统的两点上有不同的压力时,流体流动至压 力 较低的一点上。这种流体运动叫做流动。流动(流量) 使物体移 动。如果流量一定,液压油缸直径越小,活塞 运动速度越快。流量增大导致速度加快 许多人认为增大 压力将加快速度,但是这并不正 确。不能通过增大压力 来加快活塞运动速度。如果 你要使活塞运动加快,必须 提高进入油缸内油的流 量。
掘进机液压故障分析
主讲:于世浩 2012年 2 月
讲师简介
姓名:于世浩
简要资历:1975年-1980年沈空39908部队。任机械师
1981-2004年沈阳电缆厂话缆分厂 设备维修工段
2005年到三一重装制造部
2006年到服务部任服务工程师
2006年底任服务快返工程师。
2010年任首席服务工程师
同年被任讲师
直观检查法
直观检查法是液压系统故障诊断中最简易、最为方便的 查方法。通常是用眼看、手摸、耳听、嗅闻手段对设备 外部进行检查,以判断设备所产生的较为简单的故障
54
看
55
看:观察液压系统的工作情况 (1)看速度。观察执行元件的速度(既流量)有无变化、异常。 (2)看压力。检查系统各执行元件的压力大小与有无异常变化。 (3)看油液。看油液是否清洁、变质、表面是否有泡沫、油位
18
黏性
黏性的定义: 液体在外力作用下流动时,液体分子间内聚力会阻碍分
子相对动动,即分子之间产生内磨擦力,这一特性称为 液体的黏性。黏性是液体的重要物理特性,也是选择液 压油的依据。 由于液体在外力作用下才有黏性,因此液 体在静止状态是不呈现黏性的。液体黏性的大小用黏性 来表示。
19
液体的黏度
指定量表示黏性高低的量,常用的黏度有三种。 即动力黏度、运动黏度和相对黏度。平时提到 油的牌号实际是运动黏度。
21
黏度与压力的关系
压力对油液的黏度也有一定的影响。压力越高, 分子间的距离越小,因此黏度变化大。不同的油 液有不同的黏度压力变化关系。这种关系叫油液 的黏压特性。
22
注意:
掘进机液压系统不得在油温 15度以下开车。否则会造成 油泵的磨损
23
帕斯卡原理
在密闭的液体中所产生的压力, 向所有的方向传递时都不下降 ,在所有地方都以同样的大小 作用。
20
黏度和温度的关系
温度对油液黏度影响很大,当油液温度升高时,其黏度显著下降。 油液黏度的变化直接影响液压系统的性能和泄漏量,因此希望黏度 随温度的变化越小越好。不同的油液有不同的黏度温度变化关系, 这种关系叫做油液的黏温特性。 油液的黏温特性可以用黏度指数VⅠ来表示;VⅠ值越大表示油液 随温度变化率越小即黏温特性越好。
35
36
37
38
39
气体与液体的关系
40
液压注塞泵的工作原理41来自424344
谢谢。休息一下
45
第二讲 液压系统故障的检查方
46
液压系统故障的主要原因
设计、制造、运输、安装、调试、使用、维护保养(人为故障) 自然故障(老化)
注意
造成液压系统故障80%是由液压油液造成的
47
液压系统对油液的基本要求
2011年9月被工程机械协会再制造
分会评为中国机械服务专家
1
课程简介
课程目的、使工程师了解液压设备的构造,原理。 内容构成、维护与保养。液压原理。故障分析 重点、掘进机液压故障分析 培训方式、授课
2
课程目录 第一讲 液压系统的基本知识 第二讲 液压系统故障的检查方 第三讲 掘进机的维护与保养 第四讲 掘进机液压系统的故障分析
51
其它油液混入造成系统故障 (液压系统混入其它油液会造成油液的 性能发生变化如:内燃机油含有大量的清净分散剂, 会使油液抗乳化性能明显变差,水无法从油液中分 离出来,造成润滑性能下降,元件锈蚀, 如:齿轮油中含有较多的硫磷极压抗磨剂,会使油 液中硫、磷的明显提高,造成液压元件的锈蚀。)
液压系统使用维护不当造成的故障 (使用维护不当不但使设备的故 障率增加还会降低设备的使用寿命。如:超载、野 蛮操作、盲目拆卸、随意调整液压系统、不按时更 换油液及油滤、不注意油液清洁等)
3
液压系统的基本知识
4
完整的液压系统示意图
5
6
7
8
9
10
11
12
13
14
15
工作介质-液压油
液压油是液压系统中借以传递能量的 工作介质,还兼有润滑、密封、冷却、 防锈等功能。
16
密度
单位体积液体的质量称为该液体的密度 密度是液体一个重要的物理参数。随着温度或压力变化,其密度也 会发生变化,但变化量一般很小,可以忽略不计。一般液压油的密 度900kg/m³。
油液混入空气 (造成气穴腐蚀、产生强烈震动、噪声、功率损耗、 加速油品老化、)
50
系统颗粒物污染 (内部污染:油液在使用过程中造成的污染如油液 氧化产生的油泥积炭、磨擦副在使用过程中产生 的颗粒物)
(外部污染:设备加工过程中残留物、维修加油过 程中的不正确的操作、空气中的尘土、颗粒)
系统污染造成的故障 (污染的油液会严重影响系统使用性能、破坏 控制及执行元件润滑性能、金属和硬质会引起磨擦 副的磨损、金属会加速油质的氧化、氧化产生的油 泥可堵塞滤油器、油线管道、换向阀油槽、敏感压 力阀。)
P=M/V 式中:V-体积 m-体积为V的液体质量 P-液体的的密度
17
可压缩性
事故液体受压力的作用而发生体积减小变化称为液体的 可压缩性。若液压油中混入空气时其可压缩性将显加, 并将严重影响液压系统的工作性能。因此在液压系统中 尽量减少油液中混入的气体及其它挥发物质(如汽油、 煤油、乙醇和苯等)的含量。
抗乳化性、水解安定性、抗泡性、空气释放性、 抗氧化性、油液的粘度
48
低质液压油会造成系统的主要故障
造成系统油液产生气穴、液压油乳化、执行元 件磨损内泄、油温升高、润滑不良
49
由于在使用过程中污染和人为原因造成的液压故障
液压系统进水(5%就会造成油液混浊、油品老化、产生锈蚀、 油液乳化、润滑性能下降、)