当前位置:文档之家› 气力输灰技术方案

气力输灰技术方案

泸州永丰浆纸有限责任公司75t/h CFB锅炉配套气力输灰系统技术文件浙江天洁环境科技股份有限公司2014年5月目录1. 工程设计方案 (2)1.1. 工程设计方案与说明 (2)1.2. 供货范围 (7)2. 主要设备及部件选型 (9)2.1. 仓泵选型的说明 (9)2.2. 主要零部件选型说明 (9)3. 产品规格与标准 (12)3.1. 产品规格 (12)3.2. 产品执行标准与规范 (14)4. 工程实施 (15)4.1. 生产制造与试验 (15)4.2. 安装调试与运行 (15)4.3. 工程进度安排 (16)4.4. 质量保证及售后服务 (17)1. 工程设计方案1.1. 工程设计方案与说明1.1.1. 原始设计资料与设计依据1.1.1.1. 锅炉与除尘器型式锅炉容量:1×75t/h锅炉除尘器型式:一电二袋除尘器除尘器灰斗布置:3个1.1.1.2. 操作条件1.1.1.2.1. 飞灰量单台75t/h飞灰总量:9.89t/h (暂定)单台75t/h炉灰量分配:1.1.1.2.2. 飞灰理化性质1.1.1.2.2.1. 飞灰化学成分(略)1.1.1.2.2.2. 飞灰物理性质飞灰粒径分布:(暂缺,按下表考虑)飞灰温度:按150℃考虑飞灰真实密度:按2400kg/m3考虑飞灰堆积密度:按750kg/m3考虑1.1.1.2.3. 飞灰输送距离水平输送距离:按100m考虑垂直爬升:按22m考虑90 弯头处数:按5处考虑1.1.2. 输灰系统设计方案与说明1.1.2.1. 系统工艺流程参见气力输灰系统工艺流程图。

本系统流程包括如下主要部分:仓泵部分:采用上引式流态化仓泵作为系统关键输送设备。

根据电除尘器各电场工况变化,配置不同规格仓泵以适应工况要求,每只灰斗下设一台仓泵,共3台。

仓泵接受灰斗中的飞灰,在压缩空气的作用下,灰气混和物排入输送管道,实现飞灰的远距离输送。

气源部分:采用空气压缩机作为动力源,为保证系统的稳定运行,设置和干燥过滤系统。

(气源部分由用户自备)输送管道:采用普通无缝钢管为输送管道,弯头采用钢瓷复合耐磨弯头。

灰库:设300m³混凝土结构灰库1座,灰库库顶设布袋除尘器和压力真空释放阀,用于灰库排气;灰库筒体设料位计;灰库底部设气化装置和飞灰干、湿卸料设备。

1.1.2.2. 系统出力设计本系统采用3台仓泵及相应控制设备。

系统合用一套气源以降低气源波动,减少备用气源容量。

出力设计按正常灰量的150%考虑,不小于锅炉最大飞灰量。

说明:二、三电场仓泵出力主要考虑当前级电场故障停运时,二、三电场灰量加大到原一、二、三电场灰量时的出力要求。

1.1.2.3. 系统主要设备参数设计单台75t/h炉主要设备配置与参数设计见下表:1.1.2.4. 设备配置与说明1.1.2.4.1. 气源系统本工程气源设计条件如下:1.1.2.4.2. 仓泵系统本系统配置多个上引式流态化仓泵作为关键输送设备。

根据电除尘器不同电场运行工况的不同,相应配置不同规格的仓泵和管道以适应工况变化的要求。

每只灰斗配置1台仓泵,共配置仓泵3台。

每台炉仓泵具体配置如下:一电场配置F2514型仓泵1台,其有效容积为2.0m3。

仓泵出料管径为Ø114(Ø133)×7,配套出料阀型号为EL100(EL125)型。

二电场配置F1512型仓泵1台,其有效容积为1.0m3。

仓泵出料管径为Ø114×7,配套出料阀型号为EL100型。

三电场配置F0512型仓泵1台,其有效容积为1.0m3。

仓泵出料管径为Ø114×7,配套出料阀型号为EL100型。

1.1.2.4.3. 输送管道由于系统输送流速低,本系统采用加厚的普通无缝钢管作为输送管道,弯管可采用背部加厚无缝钢管弯头或钢瓷复合耐磨弯头,弯曲半径不小于0.7米。

一电场1台仓泵用1根输送管。

采用变径,规格为¢114×7—¢133×8。

二、三电场2台仓泵合用1根输送管。

采用变径,规格为¢114×7—¢133×8;输送管道在安装设计时考虑热膨胀,采用弹性管系设计原则,尽量利用弯头作补偿。

输送管道沿程每隔20至30米设吹堵装置一道,以满足系统故障堵管时的吹堵要求。

1.1.2.4.4. 控制系统1.1.2.4.4.1. 控制系统设备配置本系统设1台程序控制器〖采用三菱可编程序控制器〗实现3台仓泵及相关设备的协调有序运行。

每台仓泵各设一只现场控制箱,共3只现场控制箱。

现场控制箱接受仓泵传感器信号〖包括仓泵阀门状态信号、料位信号、仓泵运行压力参数和故障信号等〗并送至程控器,同时接受程控器的控制信号,并转换为仓泵阀门〖包括进料阀、出料阀、一次气进气阀和二次气进气阀等〗动作。

每台仓泵上设料位计、隔膜式压力开关、压力变送器等传感器件以满足流程要求。

另设系统气源压力变送器和灰库料位接口以供输送程序控制系统连锁用。

设输送显示控制柜1台及LCD监控系统以实现系统运行状态的动态监控。

1.1.2.4.4.2. 系统控制功能系统具备二种运行方式,即自动运行、就地手操。

其中自动运行为正常情况下的运行方式;就地手操为备用方式,包括就地手动和手动触发自动运行〖一个循环〗,并可切换;任何情况下手动操作时,出料阀与连接在同一根输灰管道上的其余仓泵的输送状态相连锁。

在正常运行方式下,任何一台仓泵可单独解列转为就地手操方式以便于单台仓泵的故障处理同时不影响其余仓泵的正常输送。

自动运行下,每台仓泵由料位和时间触发轮流排队运行,并可选择电场优先或灰斗高灰位优先。

同时连接在同一根输灰管道上的多个仓泵中同时只能有一台仓泵处于输送状态。

系统运行过程中,可通过液晶显示屏实时了解系统运行状态和相关参数,并可随时更改相关参数〖包括间隔时间、流化时间、输送时间、吹扫时间等〗。

系统提供故障报警信号,并进行相应的流程处理。

包括系统气源欠压报警并自动禁止下一仓泵的输送直到气源压力回复;仓泵欠压报警,提示检查仓泵进气是否正常或流化盘是否堵塞;堵管报警,同时禁止连接在同一根输灰管道上的其余仓泵的输送直到堵管清除后仓泵压力下降。

1.1.3. 300m3钢灰库系统设计方案本工程设1座300m3容积的钢结构灰库。

1.1.3.1. 主要范围包含以下内容:从+0.00米以上的钢灰库(含顶板)。

钢灰库支架、连接架、附属设备基础支架、平台扶梯。

油漆,全部钢体表面除锈及一道防锈漆,二道面漆。

汽车散装机、库底卸料器、加湿搅拌机、真空压力释放阀、排气布袋收尘器等附属设备及库体保温。

气化风机(含电机)、空气加热器、料位计、管道等。

投标方必须提供完整的上述各部分,构成功能完善的设备,作为一个操作功能单元的部位或材料,全部包括在投标方的供货范围内。

如果因投标方供货不全,造成不能正常开机的责任由承包人承担,供货不全部分由供方补齐,补齐的零部件费用包含在总价内。

1.1.3.2. 性能保证值:1.1.3.2.1. 机械担保保证提供的设备和材料为全新的,符合国家标准和发包人要求的,各个部件机械功能完善的,设计、材料和加工无任何缺陷的。

保证设计提供的设备在发包人地理环境条件下正常使用。

1.1.3.2.2. 性能担保保证设备的各项参数达到合同文件、钢灰库类设备的技术规范要求。

1.1.3.2.3.设备技术要求所用的原材料性能必须符合国家有关标准,材质为Q235钢。

钢灰库的结构为圆柱下锥体结构,顶盖设有排汽口,钢灰库的总体积约300立方米。

锥体斜壁与水平面的夹角≥60°,出灰操作层高度为~5.00m。

制作锥体钢板的厚度为10mm,圆柱体分三部份制作,其中圆柱上部(从上往下2500mm处)钢板厚度为6mm;圆柱中部(从上往下2500mm处开始到6500mm处之间的距离,即4000mm的长度)钢板厚度为8mm;圆柱下部(从上往下6500mm处开始到9900mm处之间的距离,即3400mm的长度)钢板厚度为10mm。

灰库顶部盖板采用6mm花纹板制作,顶部设置一个人孔门(规格为Ф500mm),顶盖设有支撑架支撑以达到附属设备安装使用、检修平台、牢固的目的。

钢灰库立柱:300×300mm四根,采用20mm钢板厚度焊接而成。

立柱底板、顶板采用25mm钢板,宽度大于立柱的长×宽。

平台扶梯:平台采用格栅板,净宽800mm。

扶梯踏步楼梯用格栅板,净宽700mm。

连接架:主要连接架采用大于14#的槽钢,壁厚不能低于5mm。

次要连接架采用大于10#的槽钢或大于50#角钢,壁厚不能低于5mm。

附属设备基础支架:主要连接梁采用大于14#的槽钢,壁厚不能低于5mm。

设备在锥体以上平台(靠近锥体的直筒部分)和顶部设置人孔门。

从锥体往上每隔1.5米还须设置检查手孔(含锥体)。

设备设计安装有料位器。

设备锥体部位设置安装有布风装置,保证落灰正常畅通。

灰库本体考虑密封、防雨。

±0.00米至出灰操作层净高≥4.5米。

1.2. 供货范围供货设备清单如下表:随机备件清单如下表:(1年所需)2.1. 仓泵选型的说明在本工程设计方案中,我公司推荐了上引式流态化仓泵作为系统的关键输送设备。

从原理上分析,仓式泵的输送在灰气混和物进入管道以后,在管道中的流动本质上是相同的,即固气混和物的水平管道二相流动,符合一般的固气二相流流态规律。

上引式流态化仓泵的排灰管在仓泵底部流化盘上面,(如图:管端与流化盘间有一定的间隔,此间隔高度的调整可起到调节输送浓度的作用)堆积在流化盘上部的飞灰在输送过程中,先被流化,形成流体状的均匀的灰气混和物。

然后在压力的作用下往上排入管道,排入管道的灰气混和物是均匀稳定的,应而有利于系统的稳定运行,减少堵管的可能性。

气力输灰系统在国内的实际应用中相对问题较多,据其原因,主要在于零部件故障多,可靠性差,使用寿命短,如出料阀、料位计、流化装置、压力传感器等。

根据我们的了解和分析,认为主要原因在于气力输灰系统中,关键零部件如进、出料阀等工作在既有高磨蚀性的飞灰又有一定压力的恶劣工况环境下,不可避免地飞灰容易进入阀门的密封面,一旦阀门密封面进(积)灰。

则通用的密封结构就无法保证正常密封而形成泄漏通道,灰气混和物在压力作用下通过此泄漏通道高速流动,从而产生磨损,同时扩大了泄漏通道,而此又加快了泄漏量,从而造成密封面的恶性磨损,导致密封的快速失效。

在实际应用,一旦阀门开始泄漏到完全失效,其过程是很短的,(多至几天,少至几个小时)。

由于飞灰的主要成分为Al2O3和SiO2。

其微观硬度高达HV900-1000,远远超过一般的耐磨材料,因此通过材质来解决磨损其效果不明显,至少不够理想。

要彻底解决上述的恶性磨损,只有通过零部件的设计,结构上保证:即使飞灰进入阀门的密封面,仍能保证有效的密封而不产生泄漏,这样才能根本上提高零部件的可靠性和寿命。

相关主题