当前位置:文档之家› ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为=O V Rq dq R3π4π4100εε+⎰03π4π400=+'=RqR q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

(1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ;(3)若导体球接地(设球壳离地面很远),求1V 和2V 。

解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。

半径为R 、带电量为q 的均匀带电球面产生的电势分布为⎪⎪⎩⎪⎪⎨⎧>≤=)( 4)(400R r rq R r R qV πεπε导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。

导体球是等势体,其上任一点电势为)(4132101R Qq R q R q V ++-=πε 球壳是等势体,其上任一点电势为+=rq V 024πεrq 04πε-304R Q q πε++304R Qq πε+=(2)球壳接地0π4302=+=R Qq V ε,表明球壳外表面电荷Q q +入地,球壳外表面不带电,导体球外表面、球壳表面电量不变,所以)11(42101R R q V -=πε (3)导体球接地01=V ,设导体球表面的感应电荷为q ',则球壳表面均匀带电q '-、外表面均匀带电Q q +',所以0)(4132101=+'+'-'=R Q q R q R q V πε 解得 21313221R R R R R R QR R q +--='3024R Qq V πε+'=)(4)(213132012R R R R R R Q R R +--=πε5. 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给球壳带电+q ,试求: (1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; (3)再使球壳接地,此时球壳上的电量以及外球壳上的电势。

解:(1)球壳外表面带电q +;外球壳表面带电为q -,外表面带电为q +,且均匀分布,外球壳上电势为⎰⎰∞∞==⋅=222020π4π4d R R R q dr r q r E V εε(2)外球壳接地时,外表面电荷q +入地,外表面不带电,表面电荷仍为q -。

所以球壳电势由球q +与外球壳表面q -产生,其电势为0π4π42020=-=R q R q V εε(3)如图所示,设此时球壳带电量为q ';则外壳表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。

求球外任一点的场强大小和电势(设无穷远处为电势零点)。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。

由介质中的高斯定理得=⋅⎰SS d Di q r D ∑=⋅24π当R r <时,334r q i πρ⋅=∑,所以3rD ρ=,1113ερεr DE ==当R r >时,334R q i πρ⋅=∑,所以233r R D ρ=,223223r R DE ερε== 球(R r ≤)电势为⎰∞⋅=rr d E V 1dr r R r ⎰=13ερdr r R R ⎰∞+2233ερ222213)(6ερερR r R +-= 球外(R r >)电势为⎰∞⋅=rr d E V 2dr r R r ⎰∞=2233ερr R 233ερ=7. 如图所示,一平行板电容器极板面积为S ,两极板相距为d ,其中放有一层厚度为t 的介质,相对介电常数为r ε,介质两边都是空气。

设极板上面电荷密度分别为+σ和σ-,求:(1)极板间各处的电位移和电场强度大小; (2)两极板间的电势差U ;(3)电容C 。

解:(1)取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,左底面圆在极板导体中,右底面圆在两极板之间)为高斯面,根据介质中的高斯定理,得S S D S d D S∆⋅=∆⋅=⋅⎰⎰σ∴ σ=D⎪⎪⎩⎪⎪⎨⎧==(介质内)(空气中)000rr D E εεσεσεε (2)⎰→⋅=BA l d E Ut t d r εεσεσ00+-=)( (3)USC σ=td Sr r r )1(0--=εεεε8. 如图所示,在平行板电容器的一半容积充入相对介电常数为r ε的电介质,设极板面积为S ,两极板上分别带电荷为Q +和Q -,略去边缘效应。

试求:(1)在有电介质部分和无电介质部分极板上自由电荷面密度的比值; (2)两极板间的电势差U ; (3)电容C 。

解:(1)充满电介质部分场强为2E ,真空部分场强为1E ,有电介质部分和无电介质部分极板上自由电荷面密度分别为2σ和1σ。

取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,上底面圆在极板导体中,下底面圆在两极板之间)为高斯面,由∑⎰=⋅0d q S D得11σ=D ,22σ=DdUD E ===01011εσε ① dUD E r r===εεσεε02022 ② 由①、②解得tr εσ+ σ-r εσσ=12(2)由电荷守恒定律知,Q S=+2)(21σσ ③ 由① 、② 、③ 解得SQdU r 0)1(2εε+=(3)dSU Q C r 2)1(0εε+==9. 半径为1R 的导体球,外套有一同心的导体球壳,壳的、外半径分别为2R 和3R ,当球带电荷Q 时,求:(1)整个电场储存的能量;(2)将导体壳接地时整个电场储存的能量; (3)此电容器的电容值。

解:如图所示,球表面均匀带电Q ,外球壳表面均匀带电Q -,外表面均匀带电Q (1)由高斯定理得当1R r <和32R r R <<时,0=E 当21R r R <<时,201π4rQ E ε=当3R r >时,202π4r Q E ε=所以,在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQW εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε 总能量为)111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时20π4rQ E ε=,其它区域0=E ,所以02=W)11(π821021R R Q W W -==ε(3)电容器电容为)11/(π422102R R Q W C -==ε 10. 一个圆柱形电容器,圆柱面半径为1R ,外圆柱面半径为2R ,长为L ()12R R L ->>,两圆筒间充有两层相对介电常量分别为1r ε和2r ε的各向同性均匀电介质,其分界面半径为R ,如图所示。

设、外圆柱面单位长度上带电荷(即电荷线密度)分别为λ和λ-,求:(1)电容器的电容; (2)电容器储存的能量。

解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r 。

由介质中的高斯定理得 i Sq rl D S D ∑=⋅=⋅⎰π2d当21R r R <<时,l q i λ=∑,rD π2λ=两圆筒间场强大小为⎪⎪⎩⎪⎪⎨⎧<<<<==)( 2)(22201100R r R rR r R r D E r r r επελεπελεε两圆筒间的电势差为⎰⋅=21d R R r E U⎰=R Rr r r 1d π210εελ⎰+2d π220R R r r rεελ110ln2R Rr επελ=R R r 220ln 2επελ+ 电容器的电容为ULC λ=()()R R R R Lr r r r /ln /ln 22112210εεεεπε+=(2)电容器储存的能量1 r 2CQ W 221=210211224ln lnr r r r R R R RL εεεεελπ⎪⎪⎭⎫ ⎝⎛+=11.如图所示,一充电量为Q ±的平行板空气电容器,极板面积为S ,间距为d ,在保持极板上电量Q ±不变的条件下,平行地插入一厚度为2/d ,面积S ,相对电容率为r ε的电介质平板,在插入电介质平板的过程中,外力需作多少功?解:插入电介质平板之前,dSC 00ε=,电容器储存的能量为Sd Q C Q W 02020221ε== 插入电介质平板之后,由本章习题7的解法可得到dSC r r )1(20+=εεε电容器储存的能量为SdQ C Q W r r εεε0224)1(21+== 由能量守恒定律知,在插入电介质平板的过程中,外力作的功为0W W A -=Sd Q r r επεε024)1(-=12. 一球形电容器,球壳半径为1R ,外球壳半径为2R ,两球壳间充有两层各向同性均匀电介质,其界面半径为R ,相对介电常数分别为1r ε和2r ε,如图所示。

相关主题