当前位置:文档之家› 离子通道研究进展

离子通道研究进展

离子通道研究进展陆亚宇(江苏教育学院生物系)指导老师:戴谷(江苏教育学院生物系)摘要:随着对离子通道研究的逐步深入, 各种研究方法都暴露出一定的局限性. 目前, 对于离子通道的研究工作进入了一个新阶段,即对不同方法的综合应用阶段,这不仅有助于人们在分子水平上认识离子通道的结构和功能的关系,也为不同领域的科学家提供了更多的合作机会.首先介绍了离子通道理论及实验研究方法, 并分析了各种研究方法综合应用的必要性,展望了这一领域的发展前景及其所面临的挑战性问题.并介绍最新的全自动膜片钳技术及其最新进展,它具有直接性、高信息量及高精确性的特点。

近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。

目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。

全文对全自动膜片钳仪器的原理和技术细节作简单介绍。

并简单介绍最新的关于K+通道在烟草中的发现,并对利用现代生物技术手段提高烟叶含钾量进行了展望。

关键字:离子通道; 实验方法; 全自动膜片钳;钾离子通道前言:细胞是通过细胞膜与外界隔离的,在细胞膜上有很多种离子通道(如右图),细胞通过这些通道与外界进行离子交换。

离子通道在许多细胞活动中都起关键作用,它是生物电活动的基础,在细胞内和细胞间信号传递中起着重要作用。

随着基因组测序工作的完成,更多的离子通道基因被鉴定出来,离子通道基因约占 1 .5% ,至少有400个基因编码离子通道。

相应的由于离子通道功能改变所引起的中枢及外周疾病也越来越受到重视。

离子通道的实验研究最初主要来源于生理学实验。

1949~1952年, Hodgkin等发展的“电压钳技术” 为离子通透性的研究提供技术条件。

60年代中期,一些特异性通道抑制剂的发现为离子通道的研究提供有力武器。

1976年Neher和Sakmann发展的膜片钳技术直接记录离子单通道电流,为从分子水平上研究离子通道提供直接手段。

80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系。

通道结构和功能的研究日益成为电生理学、分子生物学、生物化学、物理学等多学科交叉的热点问题.对离子通道进行研究,传统的实验方法是电压钳技术、膜片钳技术等电生理学研究方法[; 传统的理论方法主要包括PNP模型和布朗动力学模型, 伴随计算机技术的迅猛发展和X 射线晶体衍射图谱技术在离子通道研究中的应用, 以及Mackinnon 等用X 射线晶体衍射技术成功解析出多个高分辨率离子通道三维空间结构,使得人们得以使用分子动力学模拟和量子化学计算等模拟在分子水平认识离子通道结构和功能的关系;随着分子生物学快速发展,又出现了定点突变技术、人工膜离子通道重建技术等实验技术手段本文中,笔者将重点介绍目前应用较为广泛的实验及理论研究方法, 并在讨论综合研究重要性的基础上展望这一领域的发展前景及其所面临的挑战.正文:1 离子通道研究的实验方法及优缺点[1]1 . 1技术实现原理Nani on公司的PatchL iner NPCk2 16 ,MolecularDevices公司的I onworks HT和PatchXp ress 7000A全部采用的是平板微阵列技术。

其技术特点如下:在平板电极上打磨或者使用金属离子轰击成孔,每孔都是大小均一的直径约1~2 μm的小孔,每个小孔下面有电极连接到放大器,可对实验过程中的电流变化进行记录。

将细胞悬浮液加载到平板玻璃孔上,通过调节压力和吸力,一个细胞便可以自动定位在小孔上(相当于微管电极的尖端) ,自动进行封接,自动判断封接并进一步施加负压破膜以进行全细胞模式实验〔。

Flyi on公司采用的是翻转膜片钳技术,全部操作过程由软件设定机器人完成。

流程如下:机器人自动将细胞注入Fli p ti p微管( Fly2i on公司专利技术) ,然后自动把细胞冲洗到管尖底部,在负压的吸引下形成传统的吉欧封接。

自动判断封接形成是否良好并自动破膜形成全细胞模式。

随后,药物化合物等可以被自动应用到管内进行全细胞模式实验。

这种方式形成的膜片钳完全排除显微镜和显微操作,从而革命性的实现膜片钳技术的全自动化〔7, 8〕。

各自的膜片钳实现原理(见图1)。

图1多种膜片钳技术实现的原理及过程图示( a) 传统膜片钳:移动玻璃微电极至选定的细胞膜上;( b) 平板微阵列膜片钳:通过负压的作用把自动细胞摆放在微电极记录尖端;( c) 翻转膜片钳:细胞从管顶端注入微管内部并被冲到管底。

1 . 2封接的质量问题一般而言,能达到1G Ω以上的封接都能够满足当前研究需要。

Flyi on公司的全自动膜片钳机器人所采用的Fli p ti p微管技术在试验中封接数值一般分布在1~10G Ω范围内,封接的成功率在70% ~90%并且对近20个细胞系有效(如CHO, L929,JurkatCHL,LTK, HEK293)。

较高的成功率和封接质量源于使用玻璃管式的微管技术,因为传统的玻璃管在烧熔过程中具有超洁净、超光滑、高阻抗和低成本的特性,至今还没有任何材料可以替代。

PatchL iner NPCk2 16和PatchXp ress 7000A都采用的是16孔玻璃平板微阵列技术,在通常的情况下也对多个细胞系达到吉欧封接,一般地实验成功几率在60%~80%左右。

但是I onworks HT在封接质量上面表现有待提高,它采用的是384孔的塑料平板微阵列技术,试验中平均封接阻值一般在100~200MΩ左右。

但由于其采用PPC ( Populati on PatchClamp)技术,即同时对多个细胞进行膜片钳试验然后取均值作为一个细胞的实验结果,这样达到较高的实验成功率(最高可达90%左右) ,但是却以更高的消耗为代价。

1 . 3通量表现调查显示,大部分用户希望能够获得20000数据点/天(8h工作日时间)。

目前的制药公司在进行药物粗筛时,一般要达到50~100万数据点/天,而且在未来5年内这一数值还会进一步提高。

根据目前的全自动膜片钳系统通量来看,其主要适合于小规模或者中等规模的药物筛选。

目前市场上通量表现最高的膜片钳仪器为3000数据点/天( I onworksHT)。

其他的几款仪器通量分别为: Flyscreenm8500300~1000 /天, PatchL iner NPCk2 16 250 /天, PatchX2p ress 7000A 1000 /天。

1 . 4 各款仪器的其它优点除上述共同特征之外,这四款仪器还有各自的优点。

Flyscreenm8500在药物微量加样方面表现非常优秀,每次加样体积最低可以控制在5 μL左右,极大的有利于节省珍贵或者稀有药物;其膜片钳的工作方式除全细胞膜片钳方式外,还有穿孔膜片钳方式,且能稳定工作约30min左右; Fli p ti p微管采用统一化的标准工业生产,管尖电阻值稳定在019 ±8 4011MΩ左右,并且阻值大小和微管形状能够根据客户的意愿进行定制。

PatchL iner NPCk2 16在快速换液和微量加药方面同样表现很突出,膜片钳的工作方式是全细胞膜片钳,该系统在易用性上表现良好。

但是该仪器在试验中所使用的耗材玻璃平板芯片需要每隔一小段时间进行手工替换,因此在全自动的性能表现方面还需要提高。

I onworks HT是目前市场上面通量表现最高的仪器,且由于其独特的“PPC” 技术,在实验的成功率方面表现也很优秀。

PatchXp ress 7000A的通量表现和实验数据质量方面也是表现良好。

2 离子通道研究的理论方法及优缺点[2]2. 1 泊松- 能斯特- 普朗克模型( Poisson Nernst Planck model, PNP 模型)在欧姆定律、胡克定律、Poisson 方程和Nernst Planck 方程的基础上,以连续体理论为基本出发点,通过求解PNP 耦合方程来得到通道系统的离子浓度、电势和通道内的离子流,这就是PNP 模型.作为最早用于模拟离子通道通透机制的理论模型, PNP 模型形式简单,而且第一次考虑了通道的实际形状、通道内蛋白残余电荷的多少和位置、通道两端的电势差和离子浓度差等, 具有一定的进步意义. 但PNP模型具有下列局限性:1)不能准确计算表面诱导电荷及其引起的自由能势垒;2)不仅忽略了离子与通道间的相互作用,而且没有考虑离子与离子间的相互作用.而对于离子通道而言,离子与通道间的相互作用是不能被忽略的,这就使得PNP 模型的准确性令人怀疑2. 2 布朗动力学模型( Brow nian dynamics model, BD 模型)离子通道的BD 模型把离子在通道内的行为看作是随机动力学行为,把离子看作布朗粒子,这样离子通过通道的行为就可以通过求解Langev in 方程得以描述,而且与实验结果符合得比较好.尽管应用BD 模型得到了比较理想的结果,但BD 算法也存在如下缺陷:1)BD 模型是建立在一系列假设基础之上的, 且计算过程中的有些参数需要借助于其他模型来提供;2) BD 模型将水与蛋白质边界看作是刚性的.而事实上,通道蛋白在介导粒子进出的过程中不可能是静态的.2. 3 分子动力学方法( molecular dynamics methods, MD 方法)20 世纪80 年代, 人们开始应用MD 方法模拟生物大分子体系的动力学行为MD方法以牛顿第二定律为基础,采用多体势的负梯度描述系统中其他粒子对某个粒子的作用.MD 方法应用到离子通道领域具有以下优势:1)可以计算通道的PMF( potent ial of mean force) ;2) 计算同价离子选择性机制的同时还能估算扩散系数和水的介电常数; 用MD 模型得到的有关离子通道选择性与通透性的结果与实验符合得很好其局限性表现在:1)不能直接计算得到通道的电导率;2) 耗时长,对计算机的计算速度要求很高3) 不能考虑电子间的相互作用.而对于离子通道系统,电子间的相互作用是不能被忽略的. 2. 4 量子化学计算方法( quantum chemist ry calculation methods)量子化学计算方法是一种应用量子力学的基本原理和方法研究化学问题的计算方法. 应用量子化学计算方法不仅可以研究稳定和不稳定分子的结构、性能及其结构与性能之间的关系,还可以研究分子与分子之间的相互作用和相互碰撞等问题. 目前常用的量子化学计算方法主要有从头算、半经验方法和密度泛函理论( densi ty funct ional theory, DFT) .从头算有严谨的理论支持且计算结果比较精确可靠, 所以应用广泛. 但由于要计算分子的全部积分,计算量非常大,约是N 4( N 为体系的电子数目) .当遇到蛋白质等大分子体系时,计算更加耗时, 计算代价几乎无法承受半经验算法是在从头算基础上直接引用一些实验参数或忽略一些计算量极大、但对计算结果影响较小的积分求解薛定鄂方程.计算时间问题虽得以解决, 但由于要引入实验参数参与计算,故主要用于大体系的第1 步运算而难于处理复杂体系的中间体和过渡态,并且其计算结果具有定性、半定量的特点. 密度泛函理论采用泛函( 以函数为变量的函数) 对薛定鄂方程进行求解, 由于密度泛函包涵了电子相关,所以对分子性质的定性描述一般优于自洽场从头算,甚至可以与多体微扰理论MP 媲美. DFT 的另一优点是其计算量仅约正比于N 3,不是从头算的N 4, 也不是MP 的N 6~ N 8,因此DFT 越来越普遍地被用于计算分子和晶体的性质. DFT 总共包括B3L YP 和P86L YP 等11 种方法.3离子通道实验成果3.1烟草钾离子通道研究进展[3]植物吸收K+涉及到质膜上的钾转运蛋白,钾转运蛋白分为两类:K+通道和高亲和K+转运体,其中K+通道是主要的K+吸收途径。

相关主题