.铅酸蓄电池的原理与性能一、铅酸蓄电池的工作原理蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。
在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。
在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。
在放电过程中,两极活性物质逐渐消耗,负极活性物质1.电解质2.负极3.容量4.正极5.隔离物6.导线7.负荷 图4-1 电池构造示意图放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。
电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。
蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。
1.电动势的产生铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。
在未接通负载时,由于化学作用使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。
2.放电过程的化学反应当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。
同时在蓄电池内部产生化学反应:.在负极板上,每个铅原子(Pb)放出二个电子,而成铅正离子(Pb ++),因此负极板上出现若干多余的电子,这些电子在电位差的作用下,不断地经外电路进入正极板。
而在电解液内部,因硫酸分子的电离便有氢正离子(H +)和硫酸根负离子(SO 4)-存在。
图4-3 铅蓄电池放电时的化学反应这时因电荷(离子)的静电作用,氢正离子(H +)移向正极板,硫酸根负离子(SO 4--) 移向负极板,于是形成电池内部的离子电流。
当硫酸根负离子(SO 4--)与负极板上的铅正离子(Pb ++)相遇时,便生成硫酸铅(PbSO 4)分子附在负极板上。
在正极板上, 由于电子自外电路进入, (PbO 2)与水作用离解出来的四价的铅正离子(P ++++)在取得二个电子后化合变成二价铅的正离子(Pb ++),再和正极板附近的硫酸根负离子(SO 4--)结合在一起,生成硫酸铅分子(PbSO 4)附在正极板上。
与此同时,移向正极板的氢正离子(H +)便和氧负离子(O --)结合,生成水分子(H 2O)。
于是,放电时总的化学反应为:PbO 2+2H 2SO 4+Pb −−→−放电PbSO 4+2H 2O +PbSO 4 (4-1) (正极)(硫酸)(负极) (正极) (水) (负极)从放电反应式看出,随着蓄电池放电,硫酸逐渐消耗,电解液的比重逐渐下降。
因此,在实际工作中我们可以根据电解液比重变化,判断铅蓄电池的放电程度。
3.充电过程的化学反应充电是放电过程的逆过程,如图4-4所示。
图4-4 铅蓄电池在充电时的化学反应.充电时,应在蓄电池上外接充电电源(整流器),使正、负极板在放电时消耗了的活性物质还原,并把外加的电能转变为化学能储存起来。
在充电电源作用下,外电路的电流I 自蓄电池的正极板流入,经电解液和负极板流出。
于是,电源从正极板中不断取得电子输送给负极板,促使正、负极板上的硫酸铅(PbSO 4)不断进入电解液而被游离,因此在电池内部产生如下的化学反应:在负极板上,因获得了电子,所以二价的铅离子(Pb ++)被中和为铅(Pb),并以固体状态附在负极板上。
在正极板上失去的电子,则由电解液中位于极板附近处于游离状态的二价铅离子(Pb ++)不断放出二个电子来补充。
当它变成四价铅离子(Pb ++++)以后,再和水中的氢氧根离子(10H)结合,生成过渡状态的而且可离解的物质(Pb(OH)4)和游离状态的氢离子(H +)。
(Pb(OH)4)又继续被分解为二氧化铅(PbO 2)和水。
在电流作用下向负极板移动,同时向正极板移动,两种离子因静电引力而结合成硫酸。
于是,充电时总的化学反应式为:PbSO 4+2H 2O +PbSO 4−−→−充电PbO 2+2H 2SO 4+Pb (4-2) (正极) (水) (负极) (正极) (硫酸) (负极)从充电反应式看出,当蓄电池充电后,两极上原来被消耗的活性物质复原了,同时电解液中的硫酸成分增加,水分减少,电解液的比重升高,因此,在实际工作中可根据电解液比重变化,来判断铅蓄电池的充电的程度。
二、铅酸蓄电池容量蓄电池的容量不是恒定的常数,它与极板活性物质的多少、充电程度、放电电流的大小、放电时间长短、电液比重和温度高低等有关。
使用中放电率和电液温度影响较大。
1、电池容量与极板尺寸及有效物质的关系:极板愈薄,活性物质利用率愈高,电池容量就大;极板面积愈大,有效物质充分利用,容量则大;有效物质颗粒间存在微孔,使电解液接触有效物质的真实面积增大数百甚至几千倍。
由于正极板上的有效物质利用率约为45%,低于负极板上有效物质利用率50%的数值,故电池容量以正极板容量为标称单位。
正极板厚,浓差极化影响大,电解液向深处扩散困难,有效物质利用率变低。
有效物质的利用率即是被利用的有效物质数量与有效物质总量之比。
2.使用因素对容量的影响:(1) 放电率影响:一般以10小时放电率的容量作为蓄电池的正常额定容量。
放电率低于正常放电率时,可得较大的容量;反之,容量则变小。
铅酸蓄电池因放电率引起的放电一变化见下面表4-1。
.下面以深圳华达的一组阀控型铅酸某电池组的性能数据作为例子,来了解放电率对蓄电池放电容量的影响。
(2) 电解液温度的影响:蓄电池若在低温下工作,电解液扩散能力变差,粘度增大,电池内阻增加,容量降低。
实践证明,温度低于一定值时,负极容量比正极容量降低得更快,尤其是大电流放电时更为明显。
以25°C 时的电解液为标准,当电解液的温度在10°C ~35°C 范围内。
每升高1°C 时,电池容量将增大0.8%;温度每降低1°C 时,容量平均降低约0.7%。
目前设计资料上,一般都取容量温度系数为0.008。
当把电解液温度为t °C 时的电池容量Ct ,换算成25°C 时的标称容量C 25时,可按下式进行: )25t (008.01C C t25-+=(4-5) (3) 终止电压的影响:电池的容量与端电压降低的快慢有密切关系。
放电过程中,若能做到浓度极化小,端电压降低很慢,电池容量会相应提高。
终止电压是按实际需要确定的:小电流放电时,终止电压高些;大电流放电,终止电压低些。
因为小电流放电极化作用小,容易形成硫酸铅结晶,充电时不易恢复成原来有效物质,故而终止电压规定高些。
大电流放电时,扩散速度跟不上,端电压降低很快,容量发挥不出来,因此终止电压定得低些。
程控交换机供电系统,为保证设备在一定电压范围工作,采用较高终止电压,有的国家定为1.86V 。
(4) 电液浓度的影响:容量随硫酸电液浓度的变化而变化。
极板细孔中的电液浓度,决定电极电位的变化,影响电液扩散速度和电池内阻。
所以电池容量随电液浓度的增大而提高,且近似成直线关系。
但也不可浓度过大,因浓度高粘度增加,反而影响电液扩散,降低输出容量。
三、铅酸蓄电池的自放电1.自放电的产生电池的自放电是指电池在存储期间容量降低的现象。
电池开路时由于自放电使电池容量损失。
自放电通常主要在负极,因为负极活性物质为较活泼的海绵状铅电极,在电解液中其电势比氢负,可发生置换反应。
若在电极中存在着析氢过电位低的金属杂质,这些杂质和负极活性物质能给成腐蚀微电池,结果负极金属自溶解,并伴有氢气析出,从而容量减少。
在电解液中杂质起着同样的有害作用。
一般正极的自放电不大。
正极为强氧化剂,若在电解液中或隔膜上存在易于被氧化的杂质,也会引起正极活性物质的还原,从而减少容量。
蓄电池在未接通负载的情况下,内部存在着微电池的作用,它要消耗活性物质,导致使用的困难。
铅蓄电池两极版上的活性物质,在电解液中都会有一定程度的自溶性,反应式如下:Pb+SO42- = PbSO4+2ePbO2+4H++SO42-+2e = PbSO4+2H2O在外界因素的影响下自溶速度会加快,结果使Pb和PbO2无益消耗。
自放电的深度和电解液中的杂质的性质和数量密切有关,如铁的影响、锑的影响、隔板的影响。
阀控式密封铅蓄电池由于是荷电出厂,在储存期,正极板和负极板上活性物质小孔内都已吸满了电介液,可产生多重附加电极反应,如在负极上存在下列自放电反应,正极板在储存期间也产生放电,存在多重反应。
2.影响自放电速率大小的因素自放电性能不好的电池,有的只能储存2~3个月,而电池容量就没有了,这对于电池容量恢复性能是不利的,另一方面也增加了电池浮充工作的困难。
阀控铅酸电池之所以能做到密封不漏液,储存性能好,其主要因素为板栅材料。
各种材料的板栅性能,以自放电性能来比较:以铅钙板栅最小,纯铅板栅次之,低锑板栅最大。
3.杂质对自放电的影响电池活性物质添加剂、隔板、硫酸电解液中的有害杂质含量偏高,是使电池自放电高的重要原因。
杂质MnO4和Mn2+的物质都溶解于电解液,杂质CI-也很容易进入电解液,它们也对铅酸电池正极或负极的自放电有影响。
有些溶于电解液的杂质只对正极或者只对负极自放电有影响。
例如,危及负极的杂质有铂、铜、铋、锑、砷等。
它们除消耗部分活性物质外,还对析氢有加速作用。
又例如,酒精及易氧化的有机物质它们在正极板上发生自放电,除耗损活性物质外,还析出CO2等气体。
4.温度对自放电速度的影响阀控式密封铅酸电池在25~45°C环境温度下自放电速度是很小的,每天自放电量平均为0.1%左右,温度愈低,自放电速度越小,所以低温条件有利于电池储存。
5.电解液浓度对自放电影响由试验资料报道,储存在10°下的试验用阀控铅酸蓄电池(板栅材料为Pb-Ca-Sn),自放电速度随电解液密度增加而增加,且正极板受电解液密度影响最大。