2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x ∈R ,则“x >1”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.关于直线l ,m 及平面α,β,下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ⊥l ,则m ⊥α15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( )A .B .C .D .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且PB 与底面ABC 所成的角为.(1)求三棱锥P ﹣ABC 的体积;(2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【考点】轨迹方程.【分析】设P(x,y),则由题意,(m≠0),化简可得结论.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选C.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G(x)=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H(x)=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理+S ODF+S OCE=S△COD+2S ODF的解析式即可.,求解S=S△COD(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g (x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…2017年2月18日。