当前位置:文档之家› 第十七章机械系统的动力学分析

第十七章机械系统的动力学分析

2)有害阻力,即机械在运转过程中所受到的非生 产阻力。机械为了克服这类阻力所做的功是一种纯粹的 浪费。克服有害阻力所作的功称为损失功。
§17-1 平面机构力分析
2.机构力分析的目的和方法 目的: 1)求驱动力。用以确定所需功率,选择合适的电动机。 2)求生产阻力。根据原动件上驱动力的大小,确定机
械所能克服的生产阻力。 3)求机构运动副中的反力。该力大小和性质是零件设
)
2
min
m (1
)
2
则得:
2 max
2 min
2
2 m
三、机械的调速
2、周期性速度波动的调节 讨论:
max min m
(1)由公式可知,若ωm一定,当δ↓,则ωmax-ωmin↓, 机械运转愈平稳;反之,机械运转愈不平稳。设计时为
使机械运转平稳,要求其速度不均匀系数不超过允许值。
即:
δ ≤[δ ]
设某机械系统在某一瞬间总动能的增量 为dE,则根据动能定理,此动能增量应等于 在该瞬间内作用于该机械系统的各外力所作 的元功之和dW,即:
二、机械系统动力学的等效量和运动方程
1、机械的运动方程式的一般表达式
例:曲柄滑块机构,设已知: 曲柄1为原动件,ω1,质心S1 在O点,转动惯量为J1; 连杆2质量为M2,ω2,质心S2, 转动惯量J2,速度VS2; 滑块3质量为M3,质心S3在B点,速度VB3。 则该机构在dt瞬间的动能增量为 :
Wd - Wc = E1 – E其2中:Wc = Wr+ Wf
m
B A
TT
1、 起动阶段: ω=0,↗ωm ,
o 起动 稳定运动 停车
则:E1 =0,↗E2,
故:Wd > Wc = Wr +Wf 根据动能(dynamic energy)定理,功能关系为:
§17-2 机械的运转和速度波动的调节
一、机械的运转
三、机械的调速
1、机械速度波动产生原因
算出各区间功的增量后,就
可以画出机械系统在一个运动循
环内功的增量变化曲线,如图b。 最大盈亏功为:
△Wmax = Emax-Emin = Wbc =
(M d () M r ())d
c
c
a d
b b
ee d a′
由于△Wmax只与曲线的峰、 谷顶有关,与其具体的形状无关, 故可用功能指示图代替它。
2、稳定运转阶段
1)等速稳定运转 — 即
ω=常数。在任何时间
m
B A
TT
间隔都有: Wd = Wc
o 起动 稳定运动 停车
2)周期变速稳定运转 — 围绕平均速度作周期性波动
一个周期的时间间隔,Wd=Wr,E2=E1; 不满一个周期的时间间隔,Wd≠Wr,E2≠ E1。
§17-2 机械的运转和速度波动的调节
三、机械的调速
4、飞轮尺寸的确定
设轮缘的宽度为b,材料单位体积的
重量为γ(N/m3),则GA=πDHbγ。
于是
Hb= GA /(πDγ)
式中D、H及b的单位为m。
当飞轮的材料及比值H/b 选定后,由上式即可求得轮缘的 横剖面尺寸H和b。
四、机械的非周期性速度波动及其调节
机械在运转过程中,若等效力矩的变化是非周期性的, 则机械运转的速度将出现非周期性的波动,从而破坏机械 的稳定运转状态。须进行调节,以使机械恢复到稳定运转。
二、机械系统动力学的等效量和运动方程
2、机械系统的等效动力学模型
以曲柄滑块机构为例。取曲柄1为等效构件。
t
则:d
212
[J1
J
S
2
(2 1
)2
m2
(vS 2
1
)2
m3
( v3
1
)2
]
1[M1
F3
( v3
1
)]dt

Je
J1
J
S
2
(2 1
)
2
m2
(
vS 2
1
)
2
m3
( v3
1
)2
Je— 等效转 动惯量
有害阻力
凡是阻止机械产生运动的力统称为阻抗力。 阻抗力的特征是:该力与其作用点速度的方 向相反或成钝角,所作的功为负功,称为阻 抗功。
§17-1 平面机构力分析
(2)阻抗力
1)有效阻力,即工作阻力。它是机械在生产过程 中为了改变工作物的外形、位置或状态等所受到的阻力, 克服了这些阻力就完成了有效的工作。克服有效阻力所 完成的功称为有效功或输出功。
Me = M1-F3(v3/ω1)
故其运动方程式为:
Me — 等效力矩
d
(
1 2
J
2
e1
)
M
e1dt
二、机械系统动力学的等效量和运动方程
2、机械系统的等效动力学模型 同理,取滑块为等效构件,则有:
t
d
v232
[
J1
(1 v3
)2
JS2
(2 v3
)2
m2
( vS 2 v3
)2
m3 ]
v3[M1
1 v3
一、机械的运转 3、停车阶段
Wd = 0 当阻抗功逐渐将机械 具有的动能消耗完了时, 机械便停止运转。其功能 关系可用下式表示:
-Wc = E
B
A
m
TT
o 起动 稳定运动 停车
为了缩短停车所需的时间 以加速停车,在某些机械上可 以安装制动装置。
§17-2 机械的运转和速度波动的调节
二、机械系统动力学的等效量和运动方程 1、机械的运动方程式的一般表达式
为了便于讨论机械系统在外力作用下作 功和动能变化,将整个机械系统个构件的运 动问题根据能量守恒原理转化成对某个构件 的运动问题进行研究。为此引入等效转动惯 量(质量)、等效力(力矩)、等效构件的 概念,建立系统的单自由度等效动力学模型。
§17-2 机械的运转和速度波动的调节
二、机械系统动力学的等效量和运动方程 1、机械的运动方程式的一般表达式
Mr
4
75
2
2
50
2
100
50
2
75
2
Байду номын сангаас
100
2
M r 21.875N m
例题:
M/(N.m) 100
Md
75
75
A B C
D
E
50
F
G
Mr
A 21.875 N.m
o
90 180
360 450 540 630 720
)

m
n
30

J
900Wmax
2n2
Emax、Emin—角速度为最大、 最小的位置所具有的动能;
三、机械的调速
3、飞轮的设计原理
分析:
J 900Wmax
2n2
1)当△Wmax与一定时,J与n的平方值成反比,为
减小飞轮转动惯量,飞轮安装在机械的高速轴上。
2)当△Wmax与n一定时,飞轮的转动惯量J与速度不 均匀系数成反比。J越大, 越小,机械越接近匀 速;但过分追求机械运转的均匀性,将会使飞轮过 于笨重。
瞬时功率
二、机械系统动力学的等效量和运动方程
1、机械的运动方程式的一般表达式 曲柄滑块机构的运动方程式为 : t 若机构由n个活动构件组成,则动能的一般表达式为 :
瞬时功率的一般表达式为 :
二、机械系统动力学的等效量和运动方程 则机械运动方程式的一般表达式为:
公式中,若Mi与ωi同向,则取“+”;反之取“—” 号。
计计算和强度计算的重要依据。 方法:图解法和解析法
§17-1 平面机构力分析
二、平面机构动态静力分析 1、构件惯性力的确定 1)作平面复合运动的构件
2)作平面移动的构件 惯性力P1=—mαs
3)绕定轴转动的构件 惯性力偶矩MI1
§17-2 机械的运转和速度波动的调节
一、机械的运转
机械运转中的功能关系
曲线。驱动功与阻抗功为:
Wd ( ) M d ( )d a
Wr ( ) M r ( )d a
三、机械的调速
1、机械速度波动产生原因
机械动能的增量为:
E Wd Wr
[M
d
( )
M
r
(
)]d
Je
(
)
2
/
2
J ea
(
)
2 a
/
2
a
分析:
bc段:由于Med >Mer,故Wd > Wr, 即△Wbc>0,△E >0,则 称之为盈功。
F3 ]dt

me
J1
(1
v3
)2
J
S
2
(2
v3
)2
m2
(
vS 2 v3
)2
m3
me— 等效 质量
Fe=M1(ω1/v3)-F3
Me — 等效力
故其运动方程式为:
d
(
1 2
mev32
)
FeV3dt
二、机械系统动力学的等效量和运动方程
3、等效动力学模型的意义
等效构件 + 等效质量(转动惯量) + 等效力(力矩)
(2)若δ[δ],会影响机器的正常工作。如推动照明用的发 动机的活塞式原动机。若速度波动,δ,则I、V变化
大,使灯忽暗忽明。
若不满足条件,可在机械中安装飞轮以调节机械的周期性速度波动。
三、机械的调速
3、飞轮的设计原理 飞轮 — 具有很大转动惯量的回转构件。其作用:
装置飞轮的实质就是增加机械系统的转动惯量。 飞轮在系统中的作用相当于一个容量很大的储能器。 当系统出现盈功,它将多余的能量以动能形式“储存” 起来,并使系统运转速度升高幅度减小;反之,当 系统出现亏功时,它将“储存”的动能释放出来以弥 补能量的不足,并使系统运转速度下降的幅度减小。 从而减小了系统运转速度波动的程度,。
相关主题