传感器的动态特性与静态特性
y a1 x a2 x2 a4 x4
(2.3)
y
因不具有对称性,
线性范围较窄,所以
传感器设计时一般很
O
x 少采用这种特性。
2.1.1 传感器的静态数学模型
3.无偶次非线性项
当a2=a4=…=0时,静态特性为
y a1 x a3 x3 a5 x5
(2.4)
y
特性曲线关于原点
对称,在原点附近有较 O x 宽的线性区。
2.1 传感器的静态特性
定义
传感器的静态特性是指被测量的值处于稳定状态时的 输出输入关系。
只考虑传感器的静态特性时, 输入量与输出量之间的关 系式中不含有时间变量。
尽管可用方程来描述输出输入关系,但衡量传感器静 态特性的好坏是用一些指标。
重要指标有线性度、灵敏度、迟滞和重复性等。
2.1 传感器的静态特性
2.1.1 传感器的静态数学模型
4.一般情况 特性曲线过原点,但不对称。
y
y(x) a1x a2 x2 an xn
O
x y(x) a1x a2 x2 a3x3 a4 x4
y(x) y(x) 2(a1x a3x3 a5x5 )
这就是将两个传感器接成差动形式可拓宽 线性范围的理论根据。
2.1.2 描述传感器静态特性的主要指标
1.线性度
传感器的校准曲线与选定的拟合直线的偏离程度称 为传感器的线性度,又称非线性误差。
eL Dymax / yFS 100% (2.5)
yF.S.—— 传 感 器 的 满 量 程 输出值(F.S.是full scale 的缩写);
Dymax——校准曲线与拟合 直线的最大偏差。
变量与引起此变化的输入改变量之比。常用Sn表
示灵敏度,其表达式为
Sn dy/dx
(2.6)
2.1.2 描述传感器静态特性的主要指标
对线性传感器,可表示为
Sn Dy/Dx
(2.7)
一般希望测试系统的灵敏度在满量程范 围内恒定,这样才便于读数。也希望灵敏度
较高,因为S越大,同样的输入对应的输出越大。
2.1.2 描述传感器静态特性的主要指标
3.迟滞(迟环)
在相同工作条件下做全量程范围校准时,正行程(输 入量由小到大)和反行程(输入量由大到小)所得输出输 入特性曲线不重合。
eh
O
x
2.1.2 描述传感器静态特性的主要指标
(3)最小二乘拟合直线法
设拟合直线方程为y = b + kx
y
若实际校准测试点有n个,则yi 第i个校准数据与拟合直线 上响应值之间的残差为
0
Δi=yi-(kxi+b)
y=kx+b
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 D2i为最小值,即
n
2.1.2 描述传感器静态特性的主要指标
选择拟合直线的方法 (1)端点直线法,对应的线性度称端点线性度
。简单直观,拟合精度较低。最大正、负偏 差不相等。
y
Dymax
O
x
2.1.2 描述传感器静态特性的主要指标
(2)端点平移直线法,对应的线性度称独立线 性度。最大正、负偏差相等。
y
Dymax
Dymax|Dymax|
b
xi2 yi xi xi yi
n xi2
xi 2
2.1.2 描述传感器静态特性的主要指标
将k和b代入拟合直线方程,即可得到拟合直
线,然后求出残差的最大值Lmax即为非线性误差。
这种方法拟合精度很高。
2.1.2 描述传感器静态特性的主要指标
2.灵敏度
灵敏度是指传感器在稳态工作情况下输出改
2.1.1 传感器的静态数学模型
设a0=0,即不考虑零位输出,则静态特性曲 线过原点。一般可分为以下几种典型情况。
1.理想的线性特性 当a2a3…an0时,
静态特性曲线是一条直线, 传感器的静态特性为
y a1 x (2.2)
y Ox
2.1.1 传感器的静态数学模型
2.无奇次非线性项
当a3=a5=…=0时,静态特性为
传感器的一般特性分析与标定
传感器所测量的物理量基本上有两种形式:
静 态 量 , 常 量 或 变 化 缓慢 的 量
输
入
量动
态
量
— —静态特性 , 周 期 变 化 、 瞬态
变
化
或
随
机
变
化
的
量
— —动态特性
传感器的输出-输入特性是与其内部结构参数有关的外 部特性。
一个高精度的传感器必须有良好的静态特性和动态特 性才能完成信号无失真的转换。
第
二
章
传感器的一般特性分析与标定
♣ 第一节 传感器的静态特性 ♣ 第二节 传感器的动态特性 ♣ 第三节 传感器的无失真测试条件 ♣ 第四节 传感器的标定
传感器的一般特性分析与标定
在生产过程和科学实验中, 要对各种各样的 参数进行检测和控制, 就要求传感器能感受被测 非电量的变化并将其不失真地变换成相应的电量, 这取决于传感器的基本特性,即输出—输入特性。
n
D2i yi kxi b min
i 1
i 1
2.1.2 描述传感器静态特性的主要指标
D2i 对k和b一阶偏导数等于零,求出b和k的表达式
k
D2i
2 yi
kxi
b
xi
0
b
D2i
2 yi
kxi
b 1
0
即得到k和b的表达式
n
k
xi yi
n xi2
xi yi xi 2
2.1.1 传感器的静态数学模型 2.1.2 描述传感器静态特性的主要指标
2.1.1 传感器的静态数学模型
传感器作为感受被测量信息的器件,希望 它按照一定的规律输出有用信号,因此需要研 究描述传感器的方法,来表示其输入— 输出关 系及特性,以便用理论指导其设计、制造、校 准与使用。
描述传感器最有效的方法是传感器的数学 模型。
2.1.2 描述传感器静态特性的主要指标
借助实验方法确定传感器静态特性的过程称 为静态校准。
当满足静态标准条件的要求,且使用的仪器 设备具有足够高的精度时,测得的校准特性即为 传感器的静态特性。
由校准数据可绘制成特性曲线,通过对校准 数据或特性曲线的处理,可得到数学表达式形式 的特性,及描述传感器静态特性的主要指标。
2.1.1 传感器的静态数学模型
在静态条件下,若不考虑迟滞及蠕变,则传 感器的输出量y与输入量x的关系可由一代数方程 表示,称为传感器的静态数学模型,即
y a0 a1 x a2 x2 an xn
(2.1)
式中 a0——无输入时的输出,即零位输出; a1——传感器的线性灵敏度; a2,a3 , … , an——非线性项的待定常数。