耗散结构耗散结构dissipative structures比利时的普里戈金(I. Prigogine)从研究偏离平衡态热力学系统的输送过程入手,深入讨论离开平衡态不远的非平衡状态的热力学系统的物质、能量输送过程,即流动的过程,以及驱动此过程的热力学力,并对这些流和力的线性关系做出了定量描述,指出非平衡系统(线性区)演化的基本特征是趋向平衡状态,即熵增最小的定态。
这就是关于线性非平衡系统的“最小熵产生定理”,它否定了线性区存在突变的可能性。
普里戈金在非平衡热力学系统的线性区的研究的基础上,又开始探索非平衡热力学系统在非线性区的演化特征。
在研究偏离平衡态热力学系统时发现,当系统离开平衡态的参数达到一定阈值时,系统将会出现“行为临界点”,在越过这种临界点后系统将离开原来的热力学无序分支,发生突变而进入到一个全新的稳定有序状态;若将系统推向离平衡态更远的地方,系统可能演化出更多新的稳定有序结构。
普里戈金将这类稳定的有序结构称作“耗散结构”。
从而提出了关于远离平衡状态的非平衡热力学系统的耗散结构理论(1969年)。
耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。
在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大而达到有序。
偏离平衡态的开放系统通过涨落,在越过临界点后“自组织”成耗散结构,耗散结构由突变而涌现,其状态是稳定的。
耗散结构理论指出,开放系统在远离平衡状态的情况下可以涌现出新的结构。
地球上的生命体都是远离平衡状态的不平衡的开放系统,它们通过与外界不断地进行物质和能量交换,经自组织而形成一系列的有序结构。
可以认为这就是解释生命过程的热力学现象和生物的进化的热力学理论基础之一。
在生物学,微生物细胞是典型的耗散结构。
在物理学,典型的例子是贝纳特流。
广义的耗散结构可以泛指一系列远离平衡状态的开放系统,它们可以是力学的、物理的、化学的、生物学的系统,也可以是社会的经济系统。
耗散结构理论的提出,对于自然科学以至社会科学,已经产生或将要产生积极的重大影响。
耗散结构理论促使科学家特别是自然科学家开始探索各种复杂系统的基本规律,开始了研究复杂性系统的攀登。
远离平衡态的开放系统,通过与外界交换物质和能量,可能在一定的条件下形成一种新的稳定的有序结构。
典型的例子是贝纳特流。
在一扁平容器内充有一薄层液体,液层的宽度远大于其厚度,从液层底部均匀加热,液层顶部温度亦均匀,底部与顶部存在温度差。
当温度差较小时,热量以传导方式通过液层,液层中不会产生任何结构。
但当温度差达到某一特定值时,液层中自动出现许多六角形小格子,液体从每个格子的中心涌起、从边缘下沉,形成规则的对流。
从上往下可以看到贝纳特流形成的蜂窝状贝纳特花纹图案。
这种稳定的有序结构称为耗散结构。
类似的有序结构还出现在流体力学、化学反应以及激光等非线性现象中。
耗散结构的特征是:①存在于开放系统中,靠与外界的能量和物质交换产生负熵流,使系统熵减少形成有序结构。
耗散即强调这种交换。
对于孤立系统,由热力学第二定律可知,其熵不减少,不可能从无序产生有序结构。
②保持远离平衡态。
贝纳特流中液层上下达到一定温度差的条件就是确保远离平衡态。
③系统内部存在着非线性相互作用。
在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大,达到有序。
比利时的普里高津、德国的哈肯、日本的久保-铃木等学派对远离平衡态的耗散结构理论的建立与发展作出重要贡献。
但理论尚属初级阶段,有待于发掘新的概念、规律和数学工具。
耗散结构理论已用于研究流体、激光等系统、核反应过程,生态系统中的人口分布,环境保护问题,乃至交通运输、城市发展等课题。
耗散结构理论耗散结构理论是指用热力学和统计物理学的方法,研究耗散结构形成的条件、机理和规律的理论。
耗散结构理论的创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面的贡献,他荣获了1977年诺贝尔化学奖。
普里戈金的早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础。
普里戈金以多年的努力,试图把最小熵产生原理延拓到远离平衡的非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别。
以普里戈金为首的布鲁塞尔学派又经过多年的努力,终于建立起一种新的关于非平衡系统自组织的理论──耗散结构理论。
这一理论于1969年由普里戈金在一次“理论物理学和生物学”的国际会议上正式提出。
耗散结构理论提出后,在自然科学和社会科学的很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响。
著名未来学家阿尔文·托夫勒在评价普里戈金的思想时,认为它可能代表了一次科学革命。
耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。
这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。
可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。
(1)远离平衡态远离平衡态是相对于平衡态和近平衡态而言的。
平衡态是指系统各处可测的宏观物理性质均匀(从而系统内部没有宏观不可逆过程)的状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能的增量等于系统所吸收的热量减去系统对外所做的功;热力学第二定律:dS/dt>=0,即系统的自发运动总是向着熵增加的方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T的系统中内能为Ei的子系统的比率为pi.近平衡态是指系统处于离平衡态不远的线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理。
前者可表述为:Lij=Lji,即只要和不可逆过程i相应的流Ji受到不可逆过程j的力Xj的影响,那么,流Ji也会通过相等的系数Lij受到力Xi的影响。
后者意味着,当给定的边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)的态。
远离平衡态是指系统内可测的物理性质极不均匀的状态,这时其热力学行为与用最小熵产生原理所预言的行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出的,系统走向一个高熵产生的、宏观上有序的状态。
(2)非线性系统产生耗散结构的内部动力学机制,正是子系统间的非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新的耗散结构分支上。
(3)开放系统热力学第二定律告诉我们,一个孤立系统的熵一定会随时间增大,熵达到极大值,系统达到最无序的平衡态,所以孤立系统绝不会出现耗散结构。
那么开放系统为什么会出现本质上不同于孤立系统的行为呢?其实,在开放的条件下,系统的熵增量dS 是由系统与外界的熵交换deS和系统内的熵产生diS两部分组成的,即:dS=deS+diS 热力学第二定律只要求系统内的熵产生非负,即diS>=0,然而外界给系统注入的熵deS可为正、零或负,这要根据系统与其外界的相互作用而定,在deS<0的情况下,只要这个负熵流足够强,它就除了抵消掉系统内部的熵产生diS外,还能使系统的总熵增量dS为负,总熵S减小,从而使系统进入相对有序的状态。
所以对于开放系统来说,系统可以通过自发的对称破缺从无序进入有序的耗散结构状态。
(4)涨落一个由大量子系统组成的系统,其可测的宏观量是众多子系统的统计平均效应的反映。
但系统在每一时刻的实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然的、杂乱无章的、随机的。
在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小的,即使偶尔有大的涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观的实际测量产生影响,因而可以被忽略掉。
然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定的系统放大,最后促使系统达到新的宏观态。
当在临界点处系统内部的长程关联作用产生相干运动时,反映系统动力学机制的非线性方程具有多重解的可能性,自然地提出了在不同结果之间进行选择的问题,在这里瞬间的涨落和扰动造成的偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序的论断,它明确地说明了在非平衡系统具有了形成有序结构的宏观条件后,涨落对实现某种序所起的决定作用。
(5)突变阈值即临界值对系统性质的变化有着根本的意义。
在控制参数越过临界值时,原来的热力学分支失去了稳定性,同时产生了新的稳定的耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序的耗散结构状态,其间微小的涨落起到了关键的作用。
这种在临界点附近控制参数的微小改变导致系统状态明显的大幅度变化的现象,叫做突变。
耗散结构的出现都是以这种临界点附近的突变方式实现的。
一座城市不断有人外出和进入,生产的产品和原料也要川流不息地运人及运出。
这种与外界环境自由地进行物质、能量和信息交换的系统,称为开放系统。
当开放系统内部某个参量的变化达到一定阈值时,它就可能从原来无序的混乱状态,转变为一种在时间上、空间上和功能上的有序状态,即耗散结构。
如一壶水放在火炉上,水温逐渐升高,但水开后水蒸气不断蒸发,壶中的水和空气就形成了一个开放系统,带走了火炉提供的热量,水温不再升高,达到了一种新的稳定状态。
耗散结构理论中的“开放”是所有系统向有序发展的必要条件。
如一个企业只有开放才能获得发展,这种开放不仅是输出产品,输入原料,而且涉及人才、技术和管理等方面。
不断引进入才和技术,不断更新设备,才能使企业充满生机和活力。
发现耗散结构理论是由I·Prigogine(1917——)在1969年首次提出的一种新型的理论。
并于1977年获得诺贝尔化学奖。
【耗散结构理论与医学】1 人体能够形成和保持耗散结构耗散结构,是普利高津在研究不违背热力学第二定律情况下,如何阐明生命系统自身的进化过程时提出的新概念。