当前位置:文档之家› 热释电红外防盗报警器设计方案

热释电红外防盗报警器设计方案

热释电红外防盗报警器设计方案1. 设计背景随着社会的不断进步和科学技术、经济的不断发展,人们生活水平得到了很大的提高,对私有财产的保护意识在不断的增强,因而对防盗措施提出了新的要求。

本设计就是为了满足现代住宅防盗的需要而设计的家庭式电子防盗系统。

就目前市面上装备主要有压力触发式防盗报警器、开关电子防盗报警器和压力遮光触发式防盗报警器等各种报警器,但这几种比较常见的报警器都存在一些缺点。

而本设计中所使用的红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。

这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,热释电红外传感器既可用于防盗报警装置,也可用于制动控制、接近开关、遥测等领域。

2.设计方案2.1方案比较方案一:由红外传感器、电源电路、放大电路、ADC数模转换电路、AT89S52单片机中央控制电路、复位电路、中断电路、报警电路等构成。

输入的红外信号由数模转换电路转换为电信号,低电平输入单片机,由单片机输出放大信号到报警电路,使蜂鸣器发出报警信号,而中断电路和复位电路可以对报警电路进行控制。

方案二:由热释电红外传感器接收电路、放大电路、复位电路、中断电路、电源电路、报警电路构成。

当热释电红外传感器检测的人体辐射的红外线后,由放大电路将信号放大后的低电平电信号输入单片机后,由单片机输出放大信号到报警电路,使蜂鸣器发出报警信号,而中断电路和复位电路可以对报警电路进行控制。

方案三:由红外传感器、电源电路、放大电路、BIS0001处理电路、AT89S52单片机中央控制电路、复位电路、中断电路、报警电路等构成。

输入的红外信号由数模转换电路转换为电信号,低电平输入单片机,由单片机输出放大信号到报警电路,使蜂鸣器发出报警信号,而中断电路和复位电路可以对报警电路进行控制。

综合比较方案二比较可行。

2.2方案论证以上三个方案大体相同,都是由检测电路、单片机、报警电路、复位电路、中断电路、声光报警电路组成,所用到的电路和器件不同可以决定它们的特性和实用性。

方案一用到的检测红外信号电路需要用到ADC0809处理电路将传感器所接受的模拟信号转换成数字信号传给单片机中间会产生一定偏差,而方案三用到的BIS0001处理芯片是将传感器所接收的信号放大以数字信号的方式输出,有所不便。

而方案二是直接将人体辐射的红外线转换成电信号,经过放大电路将放大后的电信号输入单片机,而不需要用到芯片,设计简便合理,所以选用方案二。

3. 方案实施3.1总体电路设计系统硬件结构组成如图1所示。

图1系统硬件结构图系统包括硬件和软件设计两个部分。

模块划分为数据采集、键盘控制、报警等子模块。

电路结构可划分为:热释电红外传感器、报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。

用户终端需要完成信息采集、处理、数据传送、功能设定、本地报警等功能。

在系统的设计中,单片机是设计的中心单元,所以此系统也是单片机应用系统的一种应用。

单片机应用系统也是有硬件和软件组成。

硬件设计包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。

单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。

从设计的要求来分析该设计需要包含如下结构:热释电红外传感探头电路、报警电路、单片机、复位电路及相关的控制管理软件组成。

处理器采用单片机AT89S52。

系统是在系统软件控制下工作的。

设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL电平至AT89S52单片机。

在单片机内,经软件查询过程、识别判决等环节实时发出入侵报警状态控制信号。

驱动电路将控制信号放大并推动声光报警设备完成相应动作。

当报警延迟10s一段时间后自动解除,也可人工手动解除报警信号,当警情消除后复位电路使系统复位,或者是在声光报警10s钟后有定时器实现自动消除报警。

3.2各功能电路设计3.2.1电源电路设计电源电路设计如图2所示。

图2 电源电路本电路用到变压器、桥堆2W10、电容、三端稳压电路L7805。

由于电路中的很多元件额定电压大概就在5V左右,而我们身边常用的电压源是220V,如果直接将电路接在220V电压两端调试,就会将元器件烧坏。

因此,该电路我们先用变压器将220V电压转换为9V电压,利用桥堆2W10将交流电转换为直流电,另加电容过滤,经三端稳压电路L7805将电压变换为5V作为电路的输入电源。

3.2.2放大电路的设计放大电路设计如图3所示。

图3 放大电路本电路实现放大功能的核心元件是三极管,前提是放大不失真。

三极管的放大作用主要依靠它的发射极电流能够通过基极传输,然后到达集电极而实现的,实现这一传输过程的两个条件是:(1)内部发射极杂质浓度远大于基极杂质浓度,且基极很薄;(2)外部必须做到发射极正向偏置,集电极反向偏置。

Vi 是输入电压信号,Vo 是输出放大的电压信号。

3.2.3时钟电路的设计时钟电路设计如图4所示。

图4 时钟电路XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ ,一个振荡XTAL1XTAL2Vo周期为1/12us,故而一个机器周期为1us。

3.2.4复位电路的设计复位电路设计如图5所示。

图5 复位电路复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路开始工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。

例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。

本设计采用的是外部手动按键复位电路。

3.2.5发光报警电路的设计发光报警电路设计如图6所示。

图6 发光报警电路该电路由1个发光二极管、220Ω电阻、5V直流电源组成。

而单片机中的P3.0(RXD)为串行输入端口,当该端口处于低电平时间有效,将发光报警电路低电平端与RXD端口相连接。

电路接通后,单片机的RXD引脚被置低电平,发光二极管被点亮,起到发光报警作用。

3.2.6声音报警电路的设计声音报警电路设计如图7所示。

图7 声音报警电路该电路由三极管、电阻和蜂鸣器组成。

电路中三极管起到信号放大作用,电阻负责保护电路,蜂鸣器用来提示报警状态。

而单片机的P3.1(TXD)端口是串行输出口,用来接收外部高电平信号。

将电路的输出端接到单片机的TXD引脚上,当电路接通后,蜂鸣器发出声音报警信号,构成声音报警电路。

3.2.7中断电路的设计中断电路设计如图8所示。

图8 中断电路该电路的设计由复位按钮、电阻、和直流5V电源组成。

复位按钮实现的的是一个开关量,目的是使中断端口有效接地,而电阻则是为了保护电路。

单片机中的P3.2端口是中断输入端口,当电路正常进行时因保持中断端口始终处于高电平状态,利用向中断输入端口P3.2接入低电平信号可以实现电路的中断,所以电路正常工作时间我们需要给其提供高电平信号,使其处于高电平无中断状态,以保证整体电路的正常工作。

3.2.8热释电红外传感电路的设计热释电红外传感电路设计如图9所示。

图9 热释电红外传感电路热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。

是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。

它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。

将这个电压信号加以放大,便可驱动各种控制电路。

主要是由一种高热电系数制成的探测元件,在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。

由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。

人体辐射的红外线中心波长为9--10um,而探测元件的波长灵敏度在0.2--20um范围内几乎稳定不变。

在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7--10um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。

一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而输出电压信号。

本设计所用的热释传感器就采用双探测元的结构。

在VCC电源端利用C2和R1来稳定工作电压,同样输出端也多加了稳压元件稳定信号。

当检测到人体移动信号时,电荷信号经过FET放大后,经过C2,R1的稳压后使输出变为高电位,再经过NPN型三极管的放大,外加反相器使输入单片机的电信号为低电平。

3.3 系统硬件电路的选择及说明本设计中需要用到如下器件: AT89S52、热释电红外传感器、LED、按键、反相器74LS04、蜂鸣器等一些单片机外围应用电路,以及单片机的手工复位电路等。

其中绿灯为电源工作指示灯,代表电路处于正常状态,红灯是起报警指示作用,当RXD引脚处于低电平时红灯开始报警,同样,TXD引脚处于高电平时声音报警电路开始工作。

电路设有2个按键,S1键作为倒计时的暂停键, S2键作为电路的复位键。

3.4 软件的程序实现3.4.1主程序工作流程图系统主程序工作流程图如图10所示;图10 主程序工作流程图开始时先对系统初始化,然后检测是否有无信号输入,如果没有外界信号输入继续循环检测,如果检测到外部信号输入则启动声光报警电路开始报警,报警启动后经过十秒,声光报警结束,继续检测,循环工作,保证电路的正常工作。

3.4.2中断服务程序工作流程图中断服务程序工作流程图如图11所示。

图11 中断服务程序工作流程图本主程序实现的功能是:当单片机检测到外部热释电传感器送来的脉冲信号后,表示有人闯入监控区,从而经过单片机内部程序处理后,驱动声光报警电路开始报警,报警持续10秒钟后自动停止报警,然后程序开始循环工作,检测是否有下次触发信号,等待报警从而使报警器进入连续工作状态。

同时,利用中断方式可以实现报警持续时间未到10秒时,用手工按键停止的声光报警的作用。

手工按键停止报警中断服务程序工作流程图。

3.5软件部分的实施3.5.1编写程序利用Keil软件编写程序,使其达到预期要求,程序如下:ORG 0000HLJMP MAINORG 0003HLJMP PINT0ORG 0200HMAIN: MOV IE,#81H ;CPU开放中断,INT0允许中断SETB IT0 ;外部中断为边沿触发方式MOV SP,#30H ;指针入口地址SETB P3.0CLR P3.1MOV P1,#0FFH ;使P1口全部置1MOV P2,#00H ;P2口清零CLR P1.2LP: JNB P1.7,LA ;监测输入信号,是否有输入信号LA: ACALL DELAY ;延时消抖JNB P1.7,ALARM ;再次监测输入信号,若有输入信号转入报警子程序AJMP LPDELAY:MOV R1,0AAHLD2:MOV R2,0BBHLD1:NOPDJNZ R2,LD1DJNZ R1,LD2RETALARM:SETB P1.2 ;开始报警使运行正常绿指示灯熄灭,红灯和声报警启动CPL P3.0CPL P3.1;10S钟定时:MOV 51H,#0C8H ;10S循环次数MOV TMOD,#01H ;定时器T0定时方式1MOV TL0,#0B0H ;置50ms定时初值MOV TH0,#3CHSETB TR0 ;启动T0L2:JBC TF0,L1 ;查询记数溢出SJMP L2L1:MOV TL0,#0B0HMOV TH0,#3CHDJNZ 51H,L2 ;未到10S继续循环SETB P3.0 ;10s到关闭报警CLR P3.1CLR P1.2 ;报警结束,正常运行绿指示灯亮LJMP LP ;循环,继续工作HERE:SJMP HEREPINT0: CLR EX0 ;外部中断0服务程序开始,屏蔽外部中断PUSH PSWPUSH ACCJNB P3.2,LN ;监测是否有中断输入LN: LCALL DELAY ;延时消抖JNB P3.2,LN1AJMP LN2 ;无中断输入,中断返回LN1: SETB P3.0CLR P3.1CLR P1.2 ;使报警结束,绿指示灯亮POP ACCPOP PSWSETB EX0 ;开放外部中断0LCALL LP ;在中断继续检测是否有输入信号LN2: RETIEND3.5.2软件调试在KEIL软件里面编写程序后进行编译,编译无误后将其保存保存为.asm文件,然后转换为hex文件。

相关主题