数字电视实验报告
表4
Cov Filter
Half D1
D1
SIF
QSIF
Slice Screen
2/3D1
3/4D1
图像清晰度
正常
正常
图像下移3/8
图像下移3/8,模糊
图像下移1/8
正常
更清晰
2.实验要求:
(1)分析不同图像格式对图像清晰度的影响,并说明图像格式在视频信源编码中的作用。
答:图像格式对图像清晰度的影响如表4所示,不同的图像格式规定了不同的亮度分量和色度分量的像素数/行、行数/帧,适应于不同的编解码器。
2.实验要求:
分析当图像子采样模式变化时图像质量变化的原因,并说明图像子采样模式对视频信源编码的作用。
答:4:2:2模式中两个色差采样点数最多,因此这种采样模式图像信号质量最好,相对于4:1:0模式中两个色差采样点数最少,因此这种采样模式图像信号质量最差。图像子采样模式不同,视频信源编码时所获得的数据量就不同,编码所需要的时间也不同。
(2)根据所学知识,分析不同的图像格式适合于哪些应用,并举例说明自己所知视频产品所使用的图像格式。
答:QSIF用于可视电话,D1用于DVD。
实验九图像格式实验
第四章、音频MPEG编解码实验
实验一MPEG音频层实验1
1.实验结果:
(1)将MPEG1音频设置为“Layer 2”,音频采样率设置为“44.1KHz”,音频比特率设置为“64kbps”,将MPEG1音频设置为“Layer 1”,其它设置不变,与“Layer 2”的音频质量进行比较,记录比较的结果。改为“Layer 1”后,声音变低沉,变模糊。
表2
n的值
画面质量
伴音
2
非常模糊、不流畅、卡
正常
4
较模糊、较流畅、时而清晰时而模糊
正常
8
较清晰、流畅
正常
16
清晰、流畅
正常
32
非常清晰、非常流畅
正常
2.实验要求:
(1)分析说明当编码速率从低到高变化的过程中,图像和伴音的质量是如何变化的,并说明其原因。
答:当编码速率从低到高变化时,图像质量变好,伴音质量没有明显变化。因为编码速率越快,编解码延时越小,图像质量也越好。
音频采样率
32KHz
44.1KHz
48KHz
音频采样时钟信号对应的周期
22.67us
22.67us
22.67us
2.实验要求:
(1)比较分析音频采样率对MPEG音频编码的作用和影响。
答:音频采样率对MPEG音频编码无明显的影响。
(2)将MPEG音频设置为“Layer 2”,音频采样率设置为“44.1KHz”,音频比特率分别设为32kbps、64kbps和96kbps,收听不同音频比特率时的音频质量。比较分析音频比特率对MPEG音频编码的作用和影响。
数字电视实验报告
实验名称:MPEG视频编解码&音频MPEG编解码实验
&H.264实验内容
姓名:xx
班级:电子1002
时间:2015年5月16日
第三章、MPEG视频编解码
实验一节目码流和传输码流实验
1.实验要求:
根据所学知识,对上述观察到的现象做出解释。分析节目码流和传输码流这两种模式的基本作用,它们对画面质量有无影响。
答:改变编码速率,加大速率可减小延时。
实验四视频帧结构实验
1.实验结果:将系统模式设置为“MPEG2”,编码模式设置为“MPEG2 TS”,GOP模式设置为“IPPPPPPPP”,编码速率设置为“8”。此时视频编码器工作在MPEG-2编码,传输码流模式。只改变GOP模式,观察并记录电视监视器上的画面质量和编解码延时列于表1。
实验五视频编码速率实验
1.实验结果:将系统模式设置为“MPEG2”,编码模式设置为“MPEG2 TS”,GOP模式设置为“IPPPPPPPP”,编码速率设置为“8”。此时视频编码器工作在MPEG-2编码,传输码流模式。系统支持的编码速率为:n×256Kbps(n为从2到57的正整数),分别取n为2、4、8、16和32作为系统编码速率项的设置值,观察并记录监视器上的视频画面和伴音有何变化,结果如表2所示。
表1
GOP模式
画面质量
编解码延时
IPPPPPPPP
清楚
11.70ms
IIIIIIIII
模糊
17.60ms
IBIPBPBPB
更模糊
2.000ms
IBBPBBPBB
较清晰
5.000ms
2.实验要求:
(1)分析并比较在不同GOP模式下电视画面质量为何不同。
答:I帧编码图像为:帧内编码图像,延时最小;P帧编码图像为:前向预测编码图像,延时一般;B帧编码图像为:双向预测编码图像,延时最大;所以GOP模式中含有的I、P、B不同,画面质量也就不同。
实验八图像格式实验
1.实验结果:将GOP模式设为“IPPPPPPPP”,GOP长度设为“15”,Cov Filter设为“Half D1”,Filter Mode设为Standard,将Cov Filter分别设为“D1” 、“SIF”、“QSIF”、“Slice Screen”、“2/3D1”和“3/4D1”,观察并记录不同图像格式时的图像清晰度的变化。如表4所示。
NTSC下30、20、15、10、5、1,图像随帧率的变小而变卡。
(2)调节编码速码率对看对图像的影响。
推荐码率:D1下(2048、1024、512、256、128),图像随编码速码率的变小而变卡。
(2)将MPEG音频设置为“Layer 2”,音频比特率设置为“64kbps”,音频采样率分别设为“32KHz”、“44.1KHz”和“48KHz”,收听不同音频采样率时的音频质量,同时用示波器测量音频采样时钟,在示波器观察音频采样时钟信号,测量并记录音频采样时钟信号对应的周期。结果如表5所示。
表5
实验三视频编解码延时实验
1.实验结果:此时的时延差为14.70ms。
2.实验要求:
(1)分析视频编解码器的输入和输出产生时延差的原因。
答:视频需要经过编码器进行编码然后再传输,然后再解码,最后输出,每个过程都需要一定的时间,所以会产生延时。
(2)如果要减小视频编解码延时,尽可能地实现视频信号实时传输,可采取什么方法?
实验三H.264编码图像和制式的设定实验
分别将编码图像更改为D1、HD1、CIF看一看图像效果。
实验四H.264抓图和录像实验
了解抓图和录像的功能;了解抓图和录像功能在下面的实给中的作用。
实验五H.264视频编码参数实验
(1)调节帧率,察看对图像的影响。
推荐帧率:PAL下25、20、15、10、5、1,图像随帧率的变小而变卡。
表3
GOP长度
15
10
20
30
40
编解码延时
9.200ms
13.40ms
17.40ms
22.20ms
25.00ms
2.实验要求:
分析GOP长度对编解码延时和图像质量的影响,并说明GOP长度对视频信源编码的作用。
答:通常认为MPEG-2的GOP长度越长,图像压缩效率越高,也即在同码流同编码格式前提下还原图像质量越高,延时越大。
DUAL CHANNEL:双声道,声音有立体感,方位感;
SINGAL CHANNEL:单声道,声音有立体感,方位感。
2.实验要求:
(1)分析预加重和ES对改善音频质量的作用。
答:相比没有预加重时,声音更清晰,噪声更少;
STEREO:立体声,声音有立体感,方位感;
JIONT STEREO:联合立体声,声音有立体感,方位感;
(2)分析并比较在不同GOP模式下编解码延时为何不同,根据所掌握的知识,写出你所知道的影响编解码延时的各种因素。
答:I帧编码图像为:帧内编码图像,延时最小;P帧编码图像为:前向预测编码图像,延时一般;B帧编码图像为:双向预测编码图像,延时最大;所以GOP模式中含有的I、P、B不同,编解码延时就不同。除GOP模式外,编码速率也影响编解码延时。
答:音频比特率越大,音频质量更好,声音更悦耳、动听、清晰。音频比特率越大,音频编码所收到的音频数据与本来的声音的误差更小,所以音频质量更好。
实验二MPEG音频层实验2
1.实验结果:
(1)将ES模式设置为“STEREO”,PES标志设为“C0”,预加重分别设为“没有预加重”、“50/15us”和“CCITT J.17”,收听预加重时的音频质量。相比没有预加重时,声音更清晰,噪声更少。
图1
H.264实验内容
实验一视频显示的参数调整
1.实验要求:
记录不同参数值时图像的变化,并分析结果。
答:改变基本设置的亮度时,图像的明暗程度有改变;改变对比度时,图像的色差有改变;改变色饱和度时,每种颜色有改变;改变色调时,图像颜色有改变。
实验解码板的,解码板正确收到此包后,还原成视音频。
(2)将预加重设置为“没有预加重”,PES标志设为“C0”,ES模式分别设为“STEREO”, “JIONT STEREO”,“DUAL CHANNEL”,“SINGAL CHANNEL”,收听不同ES模式时的音频质量的变化。
STEREO:立体声,声音有立体感,方位感;
JIONT STEREO:联合立体声,声音有立体感,方位感;
DUAL CHANNEL:双声道,声音有立体感,方位感;
SINGAL CHANNEL:单声道,声音有立体感,方位感。
(2)将预加重设置“没有预加重”,ES模式设置为“STEREO”,PES标志设为“C0”。用双踪示波器的两个通道同时测量音频的输入和输出信号,在示波器上观察音频输入和输出信号的差别。
答:输入输出波形如图1所示,输出相对于输入有延迟,输出变化幅度较大,输入较平稳。
(2)分析说明当编码速率从低到高变化的过程中,图像编解码延时有无变化,分析其原因。