当前位置:文档之家› 自然对数

自然对数

自然对数以常数e为底数的对数叫做自然对数,记作lnN(N>0)。

自然对数在物理学、生物学等自然科学中有重要的意义。

1数学表示方法自然对数的一般表示方法为数学中也常见以表示自然对数。

若为了避免与基为10的常用对数混淆,可用“全写”2概念它的含义是单位时间内,持续的翻倍增长所能达到的极限值有关概念自然对数的底数e是由一个重要极限给出的。

我们定义:当n趋于无限时,e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。

对数函数当自然对数中真数为连续自变量时,称为对数函数,记作(x为自变量,y为因变量).e的级数展开式易证明:函数展开为x的幂级数(Maclaurin级数)是;特别地,当x=1时就得到了e的展开式3意义物理学意义在热力学第二定律中,系统的宏观状态所对应的微观态的多少表现为宏观态的无序程度,同时也决定了宏观过程的方向性。

看起来,一个宏观状态对应的微观状态的多少是个很重要的物理量,它标志着这个宏观态的无序程度,从中还可以推知系统将朝什么方向变化。

物理学中用字母Ω表示一个宏观状态所对应的微观状态的数目。

为了研究方便,物理学家们用得更多的是一个与Ω相关的物理量,这就是今天常常听到的——熵(entropy),用字母S表示。

玻尔兹曼在1877年提出了熵与微观态的数目Ω的关系,即S∝lnΩ,后来普朗克把它写成了等式S=klnΩ,式中k叫做玻尔兹曼常量。

如前所述,既然微观态的数目Ω是分子运动无序性的一种量度,由于Ω越大,熵S也越大,那么熵S自然也是系统内分子运动无序性的量度。

在引入熵之后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小。

这就是用熵的概念表示的热力学第二定律。

为此,不少人也把热力学第二定律叫做熵增加原理。

由熵的定义可以知道,熵较大的宏观状态就是无序程度较大的宏观状态,也就是出现概率较大的宏观状态。

在自发过程中熵总是增加的,其原因并非因为有序是不可能的,而是因为通向无序的渠道要比通向有序的渠道多得多。

把事情搞得乱糟糟的方式要比把事情做得整整齐齐的方式多得多。

要让操场上的一群学生按班级、按身高,或按任何规则来站队都是比较麻烦的:每个学生都要找到自己的位置。

但是要让已经站好队的学生解散,那就非常简单:每个学生随便朝一个方向跑去,队形就乱了。

从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着无序,所以自发的宏观过程总是向无序度更大的方向发展。

生物学意义在连锁交换定律中,重组率或重组值是指双杂合体测交产生的重组型配子的比例,即重组率=重组配字数/总配子数(亲组合+重组和)×100%,重组是交换的结果,所以重组率(recombination fraction)通常也称作交换率(crossing over percentage)或交换值。

可是仔细推敲起来,这两个数值是不尽相同。

如果我们假定,沿染色体纵长的各点上交换的发生大体上是随机的。

那么可以这样认为,如果两个基因座相距很近,由交换而分开较少,重组率就低;如果两基因座离开很远,交换发生的次数较多,重组率就高。

所以可以根据重组率的大小计算有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。

生物学家就是这样做的。

如果有关的两个基因座在染色体上分开较远,举例说重组率在12%-15%以上,那么进行杂交试验时,其间可能发生双交换或四交换等更高数目的偶数交换,形成的配子却仍然是非重组型的。

这时如简单地把重组率看作数交换率,那么交换率就要被低估了。

因为遗传图是以1%交换率作为图距单位的,所以如交换率低估了,图距自然也随之缩小了,这就需要校正。

校正的公式较多,可根据自己得出的连锁与交换试验的结果,提出单是适用于某一生物的校正公式。

一般来说,一个合适的校正公式应该满足下列两个条件:①最大的重组率不超过0.5或50%,因为这数值说明两个基因之间遵循自由组合定律;②较小的重组率应该大致上是加性的。

常用的的较简单的公式是Haldane推导的作图函数R=[1-e^(-2x)]/2,式中R代表重组率,x代表交换率。

这公式表示重组率与图距的关系,而图距的单位是1%交换率。

说明一下Haldane曲线的几点性质:①曲线的起始一小段基本上是直线,斜率接近于1,重组率可以直接看作是图距,所以重组率是加性的。

②在曲线的曲度较大的区域,重组率就不是加性的了。

当图距比较大,两端的基因的重组率就要小于相邻两个重组率之和,即Rab+Rbc>Rac,例如abc是三个连锁基因,两两间的重组率R值是非加性的,0.23+0.32>0.40。

吧Haldane公式加以改写:x=-ln(1-2R)/2,把上面R值代入公式,求得x值如下:在0.31+0.51,稍大于0.81,x值大致上成为加性的了。

③标记基因间的图距很大时,重组率与图距无关,接近或等于1/2。

所以重组率大致代表交换率,但当重组率逐渐增大时,重组率往往小于交换率,需要加以校正。

在实际应用时,要看研究的生物而定。

像黑腹果蝇那样,各染色体上定位的基因已经很多,标记的区域已划分得很细,就无需用作图函数来校正了。

但对一种新的生物开始进行连锁研究,可供利用的标记基因很少,这是最好用作图函数来加以校正,以得到更接近实际的图距。

4历史约翰·纳皮尔在1614年以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念,1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。

按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。

实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。

形如f(x) = x的曲线都有一个代数反导数,除了特殊情况p = −1对应于双曲线的弓形面积(英语:Quadrature (mathematics)),即双曲线扇形;其他情况都由1635年发表的卡瓦列里弓形面积公式(英语:Cavalieri's quadrature formula)给出,其中抛物线的弓形面积由公元前3世纪的阿基米德完成(抛物线的弓形面积(英语:The Quadrature of the Parabola)),双曲线的弓形面积需要发明一个新函数。

1647年Grégoire de Saint-Vincent(英语:Grégoire de Saint-Vincent)将对数联系于双曲线xy=1的弓形面积,他发现x轴上[a,b]两点对应的双曲线线段与原点围成的双曲线扇形同[c,d]对应的扇形,在a/b=c/d时面积相同,这指出了双曲线从x = 1到x = t的积分f(t)满足:1649年,Alphonse Antonio de Sarasa(英语:Alphonse Antonio de Sarasa)将双曲线下的面积解释为对数。

大约1665年,伊萨克·牛顿推广了二项式定理,他将1/(1+x)展开并逐项积分,得到了自然对数的无穷级数。

“自然对数”最早描述见于尼古拉斯·麦卡托在1668年出版的著作《Logarithmotechnia》中,他也独立发现了同样的级数,即自然对数的麦卡托级数。

大约1730年,欧拉定义互为逆函数的指数函数和自然对数为:e在科学技术中用得非常多,一般不使用以10为底数的对数。

以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

我们可以从自然对数最早是怎么来的来说明其有多“自然”。

以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:log(ab) = loga + logb。

但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。

虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。

但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:1.所有乘数/被乘数都可以化到0-1之内的数乘以一个10的几次方,这个用科学记数法就行了。

2.那么只考虑做一个0-1之间的数的对数表了,那么我们自然用一个0-1之间的数做底数(如果用大于1的数做底数,那么取完对数就是负数,不好看)。

3.这个0-1间的底数不能太小,比如0.1就太小了,这会导致很多数的对数都是零点几;而且“相差很大的两个数的对数值却相差很小”,比如0.1做底数时,两个数相差10倍时,对数值才相差1。

换句话说,像0.5和0.55这种相差不大的数,如果用0.1做底数,那么必须把对数表做到精确到小数点以后很多位才能看出他们对数的差别。

4.为了避免这种缺点,底数一定要接近于1,比如0.99就很好,0.9999就更好了。

总的来说就是1 - 1/X ,X越大越好。

在选了一个足够大的X(X越大,对数表越精确,但是算出这个对数表就越复杂)后,你就可以算(1-1/X)1 = P1 ,(1-1/X)2 = P2 ,……那么对数表上就可以写上P1的对数值是1,P2的对数值是2……(以1-1/X 作为底数)。

而且如果X很大,那么P1,P2,P3……间都靠得很紧,基本可以满足均匀地覆盖了0.1-1之间的区间。

5.最后他再调整了一下,用(1- 1/X)X作为底,这样P1的对数值就是1/X,P2的对数值就是2/ X,……PX的对数值就是1,这样不至于让一些对数值变得太大,比如若X=10000,有些数的对数值就要到几万,这样调整之后,各个数的对数值基本在0-1之间。

两个值之间最小的差为1/X。

6.让对数表更精确,那么X就要更大,数学家算了很多次,1000,1万,十万,最后他发现,X变大时,这个底数(1 - 1/X)X趋近于一个值。

这个值就是1/e,自然对数底的倒数(虽然那个时候还没有给它取名字)。

其实如果我们第一步不是把所有值放缩到0.1-1之间,而是放缩到1-10之间,那么同样的讨论,最后的出来的结果就是e了--- 这个大数学家就是著名的欧拉(Euler),自然对数的名字e也就来源于欧拉的姓名。

相关主题