当前位置:
文档之家› 高中化学 选修三 第三章 第三节《金属晶体》课件 新人教版
高中化学 选修三 第三章 第三节《金属晶体》课件 新人教版
硬度最小的金属是-------- 铯 [0.2]
硬度最大的金属是-------- 铬 [9.0]
1 mm] 延性最好的金属是-------- 铂[铂丝直径: 5000 展性最好的金属是-------- 金[金箔厚: 1 mm] 10000
最活泼的金属是---------- 铯
最稳定的金属是---------- 金
【总结】金属晶体的结构与性质的关系
导电性 导热性 延展性
金属离 自由电子在外 自由电子与 晶体中各原 子和自 加电场的作用 金属离子碰 子层相对滑 由电子 下发生定向移 撞传递热量 动仍保持相 动 互作用
5、影响金属键强弱的因素: 金属阳离子所带电荷越多、 离子半径越小,金属键越强。
一般情况下,金属晶体熔点由金属键强弱 决定 金属阳离子半径越小,所带电荷越多, 自由电子越多, 金属键越强,熔点就相应越高, 硬度也越大
B A
第二种是将第三层的 球对准第一层的 2,4, 6 5 4 C 层。 1
2
3
6
位,不同于 AB 两层
的位置,这是
1 6 5
2 3 4
1 6
5
2
3
4
第四层再排 A,于是形 成 ABC ABC 三层一个周
A
期。 得到面心立方堆积。
C
B
1 6
5
2
A
3
4
C B
A
配位数 ( 同层
6 , 上下层各 3 ) 此种立方紧密堆积的前视图
4、金属晶体结构具有金属光泽和颜色
• 由于自由电子可吸收所有频率的光,然后很快释放出各种 频率的光,因此绝大多数金属具有银白色或钢灰色光泽。 而某些金属(如铜、金、铯、铅等)由于较易吸收某些频 率的光而呈现较为特殊的颜色。
• 当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列 不规则,吸收可见光后辐射不出去,所以成黑色。
晶体类型
概念 作用力
原子晶体
相邻原子之间以共价 键相结合而成具有空 间网状结构的晶体
分子晶体
金属晶体
分子间以范德 通过金属键形成的 华力相结合而 晶体 成的晶体
共价键 原子 很高 很大 无(硅为半导体)
金刚石、二氧化硅、 晶体硅、碳化硅
范德华力
金属键
金属阳离子 和自由电子
构成微粒
物 理 性 质 实例
金属样品
Ti
一、金属的结构
1、金属键的定义:金属离子和自由电子 之间的强烈的相互作用,叫金属键。 (1)金属键的成键微粒是金属阳离子和 自由电子。 (2)金属键存在于金属单质和合金中。 (3)金属键没有方向性也没有饱和性。
2、金属晶体的定义:通过金属离子与 自由电子之间的较强的相互作用形成的 晶体。 (1)在晶体中,不存在单个分子 (2)金属阳离子被自由电子所包围。
熔沸点
硬度
分子 很低
很小 无
差别较大
差别较大 导体
Au体的原子堆积模型
金属原子在二维空间(平面)上有二种排列方式
配位数=4 (a)非密置层
配位数=6 (b)密置层
思考与交流 金属晶体可以看成金属原子在三维
空间中堆积而成.那么,非密置层在三维空间里堆积有 几种方式?请比较不同方式堆积时金属晶体的配位 数、原子的空间利用率、晶胞的区别。
阅读《资料卡片》并掌握 1、金属晶体的四种堆积模型对比
2、石墨是层状结构的混合型晶体
晶体具有规则的几何外形,晶体中最基本的重复单位称为是晶 胞。NaCl晶体结构如图所示,已知FexO晶体晶胞结构为NaCl 型,由于晶体缺陷,x值小于1,测知FexO晶体密度为 5.71g/cm3,晶胞边长为4.28×10-10m 。 (1) FexO中x值(精确到0.01)为 ?
同周期元素,从左到右,价电子数依次增大, 原子(离子)半径依次减弱,则单质中所形成 金属键依次增强,故钠、镁、铝三种金属熔沸 点和硬度的大小顺序是:钠<镁<铝。
资料
金属之最
熔点最低的金属是-------- 汞 [-38.87℃] 熔点最高的金属是-------- 钨 [3410℃] 密度最小的金属是-------- 锂 [0.53g/cm3] 密度最大的金属是-------- 锇 [22.57g/cm3]
晶胞的形状是什么? 含几个原子?
1、简单立方堆积
[ Po ]
配位数: 6 空间占有率: 52%
每个晶胞含原子数: 1
2、体心立方堆积-----钾型
( IA,VB,VIB)
非密置层的另一种堆积是将上层金属 原子填入下层的金属原子形成的凹穴中
金属晶体的堆积方式──体心立方堆积
配位数: 8 空间占有率: 68%
(2)晶体中的Fen+分别为Fe2+ 、Fe3+ ,在Fe2+和Fe3+总数中, Fe2+所占分数(用小数表示,精确至0.001)为 ? (3)此晶体的化学式为? (4)与某个Fe2+(或Fe3+)距离最近且等距离的O2-围成的空 间几何形状是 ?
(5)在晶体中,铁元素的离子间的最短距离为
? m
配位数:
1
3 6 5
2
3 4
6 5 4
A
,
1
2
B
关键是第三层。对第一、二层来说,第三层可以有两种最紧 密的堆积方式。
第一种是将第三层的球对准第一
层的球。
下图是此种六方 紧密堆积的前视图
1 6 5
2
3 4
A
B
A
于是每两层形成一个周期,
即 AB AB 堆积方式,形成六 方紧密堆积。 配位数 12 。 ( 同层 6 ,上下层各 3 。 )
三、金属晶体的结构特征:
在金属晶体里,金属阳离子有规则地紧密堆积,自由电 子几乎均匀分布在整个晶体中,不专属哪几个特定的金属 离子,而是被许多金属离子共有。
四、金属晶体的熔点变化规律:
(1)金属晶体熔点变化差别较大。如汞在常温下是液 体,熔点很低(-38.9。C)。而铁等金属熔点很高 (1535。C)。这是由于金属晶体紧密堆积方式、金属阳 离子与自由电子的静电作用力不同而造成的差别。 (2)一般情况下(同类型的金属晶体),金属晶体的 熔点由金属阳离子半径、所带的电荷数、自由电子的多少 而定。阳离子半径越小,所带的电荷越多, 自由电子越 多,相互作用就越大, 熔点就会越高。
3、金属晶体结构与金属延展性的关系
【讨论3】金属为什么具有较好的延展性?
原子晶体受外力作用时,原子间的位移必 然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
C B A
配位数:12 空间占有率:74%
每个晶胞含原子数: 4
空间利用率计算
例2:求面心立方晶胞的空间利用率.
解:晶胞边长为a,原子半径为r. 由勾股定理: a 2 + a 2 = (4r)2 a = 2.83 r 每个面心立方晶胞含原子数目: 8 1/8 + 6 ½ = 4 = (4 4/3 r 3) / a 3 = (4 4/3 r 3) / (2.83 r ) 3 100 % = 74 %
每个晶胞含原子数:
2
空间利用率计算
例1:计算体心立方晶胞中金属原子的空间利用率。
解:体心立方晶胞:中心有1个原子, 8个顶点各1个原子,每个 原子被8个 晶胞共享。每个晶胞含有几个原子:1 + 8 × 1/8 = 2
空间利用率计算
设原子半径为r 、晶胞边长为a ,根据勾股定理, 得:2a 2 + a 2 = (4r) 2
【思考4】已知碱金属元素的熔沸点随原子序数的增 大 而递减,试用金属键理论加以解释。
同主族元素价电子数相同(阳离子所带电荷数 相同),从上到下,原子(离子)半径依次增 大,则单质中所形成金属键依次减弱,故碱金 属元素的熔沸点随原子序数的增大而递减。
【思考5】试判断钠、镁、铝三种金属熔沸点和硬度 的 大小。
12
。
按密置层的堆积方式的第一种:六方密堆积
镁型 [六方密堆积] 3、
镁型[六方密堆积](Be Mg ⅢB ⅣB ⅦB )
配位数: 12 空间占有率: 74% 每个晶胞含原子数: 2
按密置层的堆积方式的第二种:面心立方堆积
4、铜型 [面心立方]
面心立方
C
B A
铜型 [面心立方] (ⅠB Pb Pd Pt )
在晶体中,与每个微粒紧密相邻的微粒个数 空间利用率: 晶体的空间被微粒占满的体积百分数,它用来 表示紧密堆积的程度
3a 16r
2
2
3 r a 4
空间利用率 = 晶胞含有原子的体积 / 晶胞体积 100% =
4 3 4 3 3 2 r 2 ( a) 3 3 4 100% 68% 3 3 a a
思考:密置层的堆积方式有哪些?
第二层对第一层来讲最紧密的堆积方式是将球对准 1,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
金属晶体
金属原子
自由电子
3、电子气理论:经典的金属键理论叫做 “电子气理论”。它把金属键形象地描绘 成从金属原子上“脱落”下来的大量自由 电子形成可与气体相比拟的带负电的“电 子气”,金属原子则“浸泡”在“电子气” 的“海洋”之中。
二、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽 等。
练习
3.下列叙述正确的是( B ) A.任何晶体中,若含有阳离子也一定含有阴 离子 B.原子晶体中只含有共价键 C.离子晶体中只含有离子键,不含有共价键 D.分子晶体中只存在分子间作用力,不含 有其他化学键 4.为什么碱金属单质的熔沸点从上到下逐渐 降低,而卤素单质的熔沸点从上到下却升高?