建筑与数学(二)
交,而中东的城市街道弯曲。他讲完,我向
同学讲,两者的街道形态在拓扑上“同构” 的。每一个交叉口都是两条街道相交。 一个几何图形任意“拉扯”(就像画在橡皮上),只要不发生割裂和粘接
,可做任意变形,称为“拓扑变形”。两个图形通过“拓扑变形”可以变得相
同,则称这两个图形是“拓扑同构” 。 拓扑几何——研究几何图形在一对一连续变换中了不变的性质。不考虑几 何图形的尺寸、面积、体积等度量性质和具体形状。
此图和上面 两图同构
此图和上面 两图不同构
放射形 街道
方格形 街道
上述圆、三角形、方形和任意封闭曲线同构 在拓扑变换中封闭围线的“内”和“外 ”的区分不变,边线上点的顺序不变。 高校教材《中国建筑史》第五版
P229 “拓扑同构图”
上述四个图形不同构:封闭曲线,开口曲线,有一个三叉
点的开口曲线,有一个四叉点和两个封闭域的封闭曲线
杉树林竖直的树干
水平的湖面
黑格尔说过:“建筑是地球引力的艺术”
建筑物的屋盖形状可以三维变化,丰富多彩,“奇形怪状”;墙体可以 在平面上“曲折”,而在竖直方向通常是直立的;当屋顶和墙面合成一体, 墙也可以是三维变化的形状。但是建筑物的楼层只能是水平的,人们需要 在上面活动。
高层建筑体型再复杂,楼层都必须是水平的。确定水平与垂直, 至今仍是建筑行业建造活动中最基本和最重要的工作。
建筑与数学 (二)
几何图形
如果说数字的起源是远古人类感知、记录和计算事物“多少”而产生的, 那么图形是远古人类感知、描绘和构成事物的形状而产生的。 “大漠孤烟直,长河落日圆”,自然界事物最普遍的基本形状是圆形(或 近似圆形),蜂巢的六边形也接近圆形。因为自然因素通常是各向同性的,树 干长粗,各方向都能长,所以是圆的,不会长成方的。圆是各向同性的,方就
在拓扑变换中。端点、三叉点、四叉点、封闭域数量不变。
封闭图形的“里”与“外”
封闭围线构成一个封闭图形,如何判别“里”与“外”呢?在图形的“外”部确定 一点,这容易判定,只要它离图形足够远。从这一点出发到需判定的点的路径,如果和 围线(边界)相交奇数次,则需判定的点在“里”,如果和围线(边界)相交偶数次, 则需判定的点在“外”。当然首选的出发点在“里”,从此点到需判定的点的路径,如 果和围线(边界)相交奇数次,则需判定的点在“外”,如果和围线(边界)相交偶数 次,则需判定的点在“里”。也可简述为:
莫比乌斯住宅
UN Studio
在这幢住宅里,作为垂直交通的楼梯成为莫比乌斯环形成的核心, 楼梯扭转了上下层的轴线,形成了全新的空间形式。
莫比乌斯住宅
UN Studio
ICA 假日之家 UN Studio 2006
哈萨克斯坦国家图书馆 BIG
哈萨克斯坦新国家图书馆方案竞赛中,丹麦BIG事务所的设计作品取得 了第一名。“设计是将穿越空间与时间的四个世界性经典造型——圆形、环 形、拱形和圆顶形——以莫比乌斯圈的形式融合在了一起。
展成了一座建筑,位于阿姆斯特丹近郊 的莫比乌斯住宅。建筑师以人在一天的 活动、位移为主线,运用数字技术,将 拓扑学中的莫比乌斯环作为建筑生成的 概念。 左图描绘了夫妇两人如何一起生活、 分开工作又如何相遇在共享空间。两个 人运行自己的轨迹,有时汇合,有时甚 至可能会互换角色。这个住宅混合了多 种情况,将不同的行为置于一个环形结 构之中,工作、家庭生活、独处都能在 环形中找到自己的位置。材料(主要是 玻璃和混凝土)相互依赖又转换位置, 混凝土结构在内部成为家具而立面上的 玻璃在内部成为了隔墙。
线),粘成莫比乌斯带,然后沿线剪开,结果又会怎样?沿着线剪的时候,要不要剪
完一条线,再剪另一条线?
马清运设计的莫比乌斯造型雕塑
扎哈设计的莫比乌斯造型雕塑
莫比乌斯带的建筑造型概念
北京设计院:北京凤凰传媒中心
凤凰传媒中心
北京设计院
凤凰传媒中心
北京设计院
60
莫比乌斯住宅
UN Studio
UN Studio将莫比乌斯环的概念发
从外到里,从里到外的路径与边界交奇数次;从外到外,从里到里的路径与边界交
偶数次。路径可以是曲折的,也可以穿过边界进进出出。 房屋就是封闭图形(体),人流流线就是“路径”,墙是“边界”,墙上的门就是 “交点”。
高校教材《中国建筑史》第五版
P228 “四、同构关系与自然秩序”
莱特设计的 三个住宅的平面 是拓扑同构的。
塔高146.6米,塔身倾角为51度52分,塔底部为边长230米 的正方形,边长的误差仅2厘米,直角的误差仅仅12″。
《几何原本》古希腊 欧几里得
最早用公理法则建立起演绎数学体系的典范。古希腊数学的基本 精神,是从少数的几个原始假定(定义、公设、公理)出发,通过逻 。 辑推理(因为∵… …,所以∴… …) ,得出结论。(并可作为新的 可接受的命题) 爱因斯坦:“西方科学的发展是以两个伟大成就为基础,那就是: 希腊哲学家发明的形式逻辑体系(在欧几里得几何学中),以及通过 系统的实验发现有可能找出因果关系(在文艺复兴时期)”。
星状二十面体
星状十二面体
五角六十面体
22
蒙特利尔博览会美国馆
富勒
1967
富勒发明的张力杆件穹窿,直径76 m。三角形金属网状 结构组合成一个球体。 “以最小追求最大。” (Doing the most with the least.) 圆球建筑以“无一定尺寸限制的结构”为概念,不连续的和连续的张力相结合,以最小的 材料和最合理的结构、最小的投资创造出最大的内部空间。 富勒说,“评判建筑结构优劣的一个好指标,是遮盖一平方米地面所需要的结构重量。常 规墙顶设计中,这数字往往是2500公斤每平方米,但‘网球格顶’设计却可以用4公斤每平方 米完成。”
“水立方”(奥运游泳馆)表皮 Skin
尽管每个元泡形状不同,但交点都是三条边相交的“ Y ”形 。
镶嵌图形
通过“拉伸”或“压扁”,等腰三角形、长方形、扁六边形,也能以单一个体无间隙镶嵌。
用不同的正多边形来拼铺整个平面,但每一个交叉点周围的正多边形种类和顺序都相
同,叫做半正镶嵌图。半正镶嵌图有8种。
参见《建筑设计与
人文科学》
球和立方体同构,与轮胎不同构。
欧美小住宅和中国四合院的拓扑结构不同,前者与球同构,后者与轮胎同构。
头颅拓扑比较,
看动物的进化。
莫比乌斯带 Mö bius Strip
德国数学家莫比乌斯发明 将一个长方形纸条 的一端固定,另一端扭
转半周后,把两端粘合
在一起 ,得到的曲面就 是莫比乌斯带。 用一种颜色,在纸圈上面涂抹,画笔没有越过纸边,却把 整个纸圈涂抹成一种颜色,不留下任何空白。或,一个蚂蚁不 越出纸边,就可以爬过纸面所有表面。 试验:(1)如果在裁好的一条纸带正中间画一条线(正反两面都画上中线),粘成 莫比乌斯带,然后沿中线剪开,把这个圈一分为二,结果会怎样? (2)在裁好的一条纸带正中间画两条线(三等分带子宽度,正反两面都画上
埃舍尔的镶嵌图形
埃舍尔的镶嵌图形
圆之界限 1959
方之界限 1959
埃舍尔的镶嵌图形
埃舍尔的“迷惑的图画”
埃舍尔“迷惑的图画”
瀑布
1961
埃舍尔“迷惑的图画”
现实 1953
对称
在数学上,将两种状态间通过确定的规则对应起来的关系,称为 从一种状态到另一种状态的变换。 如果某一现象(或系统)在某种变换下不改变,则说该现象(或系 统)具有该变换所对应的对称性。 圆对过圆心且与圆所在平面垂直的直线具有旋转变换的对称性,并 对直径具有镜像反射变换的对称性。 无论怎样复杂的转动都不能把左手转成右手。 围棋盘(方格网,规则网格)具有平移变换的对称性; 图形的角度和长度比具有相似变换的对称性; 以相等的时间间隔平移的对称性,通常称为周期性; 一个静止的物体具有任意时间平移的对称性。 内特尔(Noether)定理:如果运动规律在某一变换下具有对称性, 必相应存在一个守恒定律。例如:物理定律不随时间变化,能量就守恒; 作用量在空间平移下保持不变,动量就守恒;作用量在空间旋转下保持 不变,角动量就守恒;
4+6
3 + 12
4 + 6 + 12
3+4+6
3+6
3+6
3+4
3+4
伊斯兰清真寺装饰图案
12
三角形镶嵌
华盛顿美术馆东馆
三角形镶嵌
旧金山圣玛丽教堂
正多面体
只有五种: 正4面体——正三角形面,4个顶点,一 个顶点会聚3条棱边,共6条棱边; 正6面体(正方体)——正四边形面,8 个顶点,一个顶点会聚3条棱边,共12 条棱边; 正8面体——正三角形面,6个顶点,一 个顶点会聚4条棱边,共12条棱边; 正12面体——正五边形面,20个顶点, 一个顶点会聚3条棱边,共30条棱边; 正20面体——正三角形面,12个顶点, 一个顶点会聚5条棱边,共30条棱边;
欧拉公式:V + F - E = 2 V:顶点数 F:面数 E:棱边数
二十面体:面是正六边形与正五边形组合
正五边形和正三角形 组合
通过组合和对偶可以产生丰富的变化
4×2 6×3
4×5 6×4
6×2 6×5
8×3
8×4
8×5
4+4
6+8
12+20
其他同形多面体
菱形十二面体
菱形三十面体
梯形二十四面体
富勒是第一个运用六边形和五边 形构成的球形薄壳建筑结构,作成能 源耗费极低,强度却很强大的建筑物, 后来这种结 构被广泛运用,现代运 动的足球,就是运用这个结构所制造。 这个结构也协助科学家发现了碳C60, 后来被称为 富勒烯。
24
可滚动的多面体住宅 波哥达 哥伦比亚 2009年
张拉膜结构
美国丹佛机场候机楼
抄写在纸草上的残片