当前位置:
文档之家› 高考物理动量守恒定律试题经典
高考物理动量守恒定律试题经典
(2)对P1、P2、P系统,由动量守恒定律
解得 ,方向水平向右,
此过程中弹簧的最大弹性势能 ;
(3)对P1、P2、P系统,由动量守恒定律
由能量守恒定律得
解得P的最终速度 ,即P能从P1上滑下,P的最终速度
7.甲图是我国自主研制的200mm离子电推进系统,已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力.
高考物理动量守恒定律试题经典
一、高考物理精讲专题动量守恒定律
1.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出.重力加速度为g.求:
(1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离.
【答案】(1) (2)
解得:v= =4m/s
在Q点,不妨假设轨道对物块A的弹力F方向竖直向下,根据向心力公式有:mg+F=
解得:F= -mg=22N,为正值,说明方向与假设方向相同。
⑵根据机械能守恒定律可知,物块A与物块B碰撞前瞬间的速度为v0,设碰后A、B瞬间一起运动的速度为v0′,根据动量守恒定律有:mv0=2mv0′
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.
(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.
(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;
(3)求碰后AB滑至第n个(n<k)光滑段上的速度vn与n的关系式.
【答案】(1) ,F=22 N (2)k=45 (3)
【解析】
⑴物块A从开始运动到运动至Q点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR= -
6.如图,两块相同平板P1、P2置于光滑水平面上,质量均为m=0.1kg.P2的右端固定一轻质弹簧,物体P置于P1的最右端,质量为M=0.2kg且可看作质点.P1与P以共同速度v0=4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P1的长度L=1m ,P与P1之间的动摩擦因数为μ=0.2,P2上表面光滑.求:
(1)P1、P2刚碰完时的共同速度v1;
(2)此过程中弹簧的最大弹性势能Ep.
(3)通过计算判断最终P能否从P1上滑下,并求出P的最终速度v2.
【答案】(1)v1=2m/s (2)EP=0.2J (3)v2=3m/s
【解析】
【分析】
【详解】
(1)P1、P2碰撞过程,由动量守恒定律
解得 ,方向水平向右;
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极A的氙离子数为n,在时间 内,离子推进器发射出的氙离子个数为 ,设氙离子受到的平均力为 ,对时间 内的射出的氙离子运用动量定理, , = nmv
根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F= = nmv
【解析】
【分析】
【详解】
试题分析:(1)设子弹穿过物块后物块的速度为V,由动量守恒得
mv0=m +MV①
解得
②
系统的机械能损失为
ΔE= ③
由②③式得
ΔE= ④
(2)设物块下落到地面所需时间为t,落地点距桌面边缘的水平距离为s,则
⑤
s=Vt⑥
由②⑤⑥得
S= ⑦
考点:动量守恒定律;机械能守恒定律.
点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.
C在A上滑动过程中,由能量守恒定律得
-μmgL= ·3mv - ·2mv .
联立以上三式解得v0=2 .
(2)根据动量定理可知,B对A的冲量与A对B的冲量等大反向,则I的大小等于B的动量变化量,即I=-mv2=- ,负号表示B对A的冲量方向向右。
10.如图所示,带有 光滑圆弧的小车A的半径为R,静止在光滑水平面上.滑块C置于木板B的右端,A、B、C的质量均为m,A、B底面厚度相同.现B、C以相同的速度向右匀速运动,B与A碰后即粘连在一起,C恰好能沿A的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g)
解得:v0′= =3m/s
设物块A与物块B整体在粗糙段上滑行的总路程为s,根据动能定理有:-2μmgs=0-
解得:s= =4.5m
所以物块A与物块B整体在粗糙段上滑行的总路程为每段粗糙直轨道长度的 =45倍,即k=45
⑶物块A与物块B整体在每段粗糙直轨道上做匀减速直线运动,根据牛顿第二定律可知,其加速度为:a= =-μg=-1m/s2
(1)碰后A球的速度大小;
(2)碰撞过程中A、B系统损失的机械能.
【答案】 ,
【解析】
试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.
(2)由能量守恒定律可以求出损失的机械能.
解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:
mAvA+mBvB=mAv′A+mBv′B
代入数据解:v′A=1.0m/s
2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短).
②碰撞过程中A、B系统损失的机械能量为:
代入数据解得:E损=0.25J
答:①碰后A球的速度为1.0m/s;
②碰撞过程中A、B系统损失的机械能为0.25J.
【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,在光滑的水平面上有一长为L的木板B,其右侧边缘放有小滑块C,与木板B完全相同的木板A以一定的速度向左运动,与木板B发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C刚好没有从木板A上掉下.已知木板A、B和滑块C的质量均为m,C与A、B之间的动摩擦因数均为μ.求:
(1)木板A与B碰前的速度v0;
(2)整个过程中木板B对木板A的冲量I.
【答案】(1)2 (2)- ,负号表示B对A的冲量方向向右
【解析】(1)木板A、B碰后瞬时速度为v1,碰撞过程中动量守恒,以A的初速度方向为正方向,由动量守恒定律得mv0=2mv1.
A、B粘为一体后通过摩擦力与C发生作用,最后有共同的速度v2,此过程中动量守恒,以A的速度方向为正方向,由动量守恒定律得2mv1=3mv2.
由动量守恒定律得
解得 ,负号表示方向与 离子速度方向相反
(3)衰变过程产生的能量
由爱因斯坦质能方程得
解得
5.如图所示,光滑水平面上依次放置两个质量均为m的小物块A和C以及光滑曲面劈B,B的质量为M=3m,劈B的曲面下端与水平面相切,且劈B足够高,现让小物块C以水平速度v0向右运动,与A发生弹性碰撞,碰撞后小物块A又滑上劈B,求物块A在B上能够达到的最大高度.
【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相关数学知识辅助分析、求解。
3.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u表示,1u等于1个12C原子质量的十二分之一.取氢核和氦核的质量分别为1.0u和14u.)
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法.
【答案】(1) (2) (3)增大S可以通过减小q、U或增大m的方法.
提高该比值意味着推进器消耗相同的功率可以获得更大的推力.
由题意可知AB滑至第n个(n<k)光滑段时,先前已经滑过n个粗糙段,根据匀变速直线运动速度-位移关系式有:2naL= -
解得:vn= = m/s(其中n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。