血清清蛋白、γ-球蛋白的分离、提纯与鉴定
一、实验目的
1.掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法;
2.掌握醋酸纤维素薄膜电泳法的原理和基本方法;
3.了解柱层析技术。
二、实验原理
血清蛋白主要由清蛋白和球蛋白组成,各行使其重要的功能。
本实验利用盐析方法将血清中的清蛋白和球蛋白分离,并用电泳技术观察蛋白质分离教果。
1.盐析
蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。
当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出,蛋白质分子沉淀析出的方法很多,根据对蛋白质稳定因素破坏的不同有中性盐析法、有机溶溶剂法、重
金属盐法以及生物碱试剂法等。
盐析法的原理是:中性盐如硫酸铵((NH
4)
2
SO
4
)等对蛋白
质作用破坏了蛋白质表面水化膜,并且中和了部分电荷,从而使蛋白质相互聚集而析出。
由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不同,因此调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。
血清球蛋白在半饱和状态下发生沉淀,而血清清蛋白在完全饱和状态下沉淀,利用此特性可把蛋白质分段沉淀下来,即在半饱和的中,血清蛋白不沉淀,而血球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀蛋白加少量蒸馏水即可溶解,由此达到分离清蛋白和白蛋白的目的。
2.脱盐
盐析得到的蛋白质含有高浓度中性盐,需要有脱盐过程去除蛋白质遗留的中性盐,常用方法有:透析法脱盐和凝胶层析法脱盐。
本实验采用凝胶层析法脱盐,在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。
分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。
3.纯化(离子交换层析)
离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。
带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。
本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的点正电荷的离子则不能,这样便可达到分离纯化的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。
血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和伽马球蛋白分离出来。
4.纯度鉴定(电泳)
血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。
因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
三、材料与方法:以流程图示意
1.实验材料
人血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)纤维素离子
交换层析柱、饱和硫酸铵溶液、
0.3mol/l 的PH6.5醋酸铵缓冲液、0.06mol/l 的PH6.5醋酸铵缓冲液、0.02mol/l 的PH6.5醋酸铵缓冲液、1.5mol/l 的NaCl-0.3mol/NH4AC 溶液、20%磺基水杨酸、1%BaCl2溶液、电泳仪、电泳槽。
2.实验方法
1) 实验流程
2)
实验步骤
① 盐析:中性盐沉淀步骤
注意:上层清夜尽量全部吸出,但不可吸出沉淀物。
② 脱盐:过凝胶层析柱步骤
注意:a.当层析柱的缓冲液面或样品液面刚好下降到纤维素床表面时,不要使液面低于纤维素膜表面,以免空气进入凝胶床。
b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。
C.切勿将检测蛋白质的磺基水杨酸与检查硫酸根的氯化钡混淆,因为二者相应生成物的沉淀均为白色。
d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失。
e.葡萄糖凝胶价钱昂贵,要回收再生避免损耗,严禁倒掉。
③球蛋白的纯化:过DEAE纤维素阴离子交换层析柱
注意:a.当层析柱的缓冲液面或样品液面刚好下降到纤维素床表面时,不要使液面低于纤维素膜表面,以免空气进入凝胶床。
b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。
C.切勿将检测蛋白质的磺基水杨酸与检查硫酸根的氯化钡混淆,因为二者相应生成物的沉淀均为白色。
d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失,特别是收集伽马球蛋白时。
④清蛋白的纯化:过DEAE纤维素阴离子交换层析柱
注意:a.当层析柱的缓冲页面或样品页面刚好下降到纤维素膜表层时,不要是液面低于纤维素膜表面,以免空气进入凝胶床。
b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。
C.使用时切勿将各时段所用的溶液浓度搞混。
d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失。
⑤纯度鉴定(醋酸纤维素薄膜电泳)
四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。
1.实验结果
从电泳图谱中可以看出,清蛋白第一管和清蛋白第二管的蛋白质与血清的清蛋白电泳图谱几乎一致,可以确定管内的蛋白质为清蛋白,同理球蛋白管内的蛋白质为γ-球蛋白。
2.实验讨论
1)血清电泳中个别电泳带的两条带之间界限不明显
①染色时,醋酸纤维薄膜不是一张一张放入染色液的,在染色固定前,薄膜与薄膜之间重叠,造成薄膜上还未固定的血清蛋白彼此粘连。
②染色时间控制不合适。
因为时间长,薄膜底色深不易脱去;时间短,着色浅不宜区分,或造成条带染色不均;
③透明时间控制不合适,如在透明液中浸泡时间太长则薄膜溶解,太短则透明度不佳。
2)第一管血清蛋白电泳带参差不齐
①薄膜表面吸干时吸的太干或吸的不完全。
因为点样时应将膜片表面多余的缓冲液用滤纸吸去,以免缓冲液太多引起样品扩散。
但也不能吸得太干,太干则样品不易进入薄膜的网孔内,而造成电泳起始点参差不齐,影响分离效果;
②点样不均匀。
3)第一管血清蛋白中含有少量杂质致使电泳图出现偏差。
思考题
1.硫酸铵盐析一步,为什么是0.8ml血清加0.8ml饱和硫酸铵?
血清球蛋白在半饱和硫酸铵溶液中发生沉淀,而血清清蛋白在完全饱和硫酸铵溶液中沉淀,将血清和饱和硫酸铵等体积混合后,其状态相当于在半饱和硫酸铵溶液中,在此状态下,球蛋白沉淀,而清蛋白不沉淀,因而可以将其分开。
2.为什么实验中DEAE纤维素柱分离γ-球蛋白后不用再生,可直接用于纯化清蛋白?
因为γ-球蛋白带正电荷,不与DEAE结合,会从层析柱中首先洗脱出来,所以分离γ-球蛋白后可直接用于纯化清蛋白。
3.应用醋酸纤维素薄膜电泳鉴定分离纯化后的血清清蛋白和γ-球蛋白的纯度,根据
什么来确定它是清蛋白还是γ-球蛋白?判定它们纯度的依据是什么?
由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同,实验的得到的电泳带的位置也不相同。
在5种蛋白中,血清蛋白的等电点和相对分子质量最小,γ-球蛋白的最大,血清蛋白的含量远远高于γ-球蛋白,所以在血清的电泳结果中,最前面的颜色较深的电泳带属于血清蛋白,最后面的颜色较浅的电泳带属于γ-球蛋白。
所以将4张醋酸纤维素薄膜上的电泳带进行对比,即可的得知纯化后的液体中含有那种蛋白。
根据电泳鉴定的原理以及血清电泳的结果可得知:可以凭借薄膜上出现的电泳带的数目来判断纯度。
如若只出现一条,则纯度较高,条数越多,纯度越低。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。