当前位置:文档之家› 柴油机的发展历程及其未来趋势

柴油机的发展历程及其未来趋势

柴油机的发展历程班级:学号:姓名:发展历程:1860年,法国发明家莱诺制成了第一台实用内燃机(单缸、二冲程、无压缩和电点火的煤气机,输出功率为0.74—1.47KW,转速为100r/min,热效率为4%)。

1862年法国工程师德罗沙认识到,要想尽可能提高内燃机的热效率,就必须使单位气缸容积的冷却面积尽量减小,膨胀时活塞的速率尽量快,膨胀的范围(冲程)尽量长。

在此基础上,他在提出了著名的等容燃烧四冲程循环:进气、压缩、燃烧和膨胀、排气。

1876年,德国人奥托制成了第一台四冲程往复活塞式内燃机(单缸、卧式、以煤气为燃料、功率大约为2.21KW、180r/min)。

在这部发动机上,奥托增加了飞轮,使运转平稳,把进气道加长,又改进了气缸盖,使混合气充分形成。

这是一部非常成功的发动机,奥托把三个关键的技术思想:内燃、压缩燃气、四冲程融为一体,使这种内燃机具有效率高、体积小、质量轻和功率大等一系列优点。

在1878年巴黎万国博览会上,被誉为“瓦特以来动力机方面最大的成就”。

等容燃烧四冲程循环由奥托实现,也被称为奥托循环。

煤气机虽然比蒸汽机具有很大的优越性,但在社会化大生产情况下,仍不能满足交通运输业所要求的高速、轻便等性能。

因为它以煤气为燃料,需要庞大的煤气发生炉和管道系统。

而且煤气的热值低(约1.75×107~2.09×107J/m3),故煤气机转速慢,比功率小。

到19世纪下半叶,随着石油工业的兴起,用石油产品取代煤气作燃料已成为必然趋势。

1883年,戴姆勒和迈巴赫制成了第一台四冲程往复式汽油机,此发动机上安装了迈巴赫设计的化油器,还用白炽灯管解决了点火问题。

以前内燃机的转速都不超过200r/min,而戴姆勒的汽油机转速一跃为800—1000r/min。

它的特点是功率大,质量轻、体积小、转速快和效率高,特别适用于交通工具。

与此同时,本茨研制成功了现在仍在使用的点火装置和水冷式冷却器。

柴油机几乎是与汽油机同时发展起来的,它们具有许多相同点。

所以柴油机的发展也与汽油机有许多相似之处,可以说在整个内燃机的发展史上,它们是相互推动的。

德国狄塞尔博士于1892年获得压缩点火压缩机的技术专利,1897年制成了第一台压缩点火的“狄塞尔”内燃机,即柴油机,从此揭开了柴油机发展的新篇章。

1976年,德国大众首先在高尔夫轿车上采用柴油发动机;1989年,德国大众高尔夫柴油车获得“低排放车”的称号;1990年,德国大众首次推出增压、直喷柴油机,德国大众在柴油动力技术的开发和应用上一直走在世界的前沿;1993年,开发出四缸涡轮增压直喷柴油发动机(TDI);1995年,开发出自然吸气式直喷(SDI)柴油发动机;1995年,开发出变截面涡轮增压器;1998年,开发出泵喷嘴技术;1999年,开发出3升路波轿车柴油动力是未来的主流技术。

未来的柴油动力将创造一个光辉灿烂的新经济时代,德国大众一升轿车的出世令整个世界震惊,这种柴油概念轿车的百公里油耗实现了创记录的0。

99升----世界上最省油的轿车。

发动机采用铝制自然吸气式单缸柴油机,采用了先进的高压直接喷射技术,排量为0。

3升;2002年,一汽-大众率先将捷达SDI轿车投放中国市场;2004年,一汽-大众引入TDI技术,领路中国汽车新动力时代。

优点:1、不但可以省去化油器和点火装置,提高了热效率。

2、柴油机由于其压缩比大,最大功率点、单位功率的油耗低。

在现代优秀的发动机中,柴油机的油耗约为汽油机的70%,柴油机是目前热效率最高的内燃机。

3、柴油机因为压缩比高,发动机结实,故经久耐用、寿命长。

缺点:1、柴油机的结构笨重。

通常柴油的单位功率质量约为汽油机的1.5~3倍。

2、在同一排量下,柴油机的输出功率约为汽油机的1/3。

因为柴油机把燃料直接喷入气缸,不能充分利用空气,相应功率输出低。

假设汽油机的空气利用率为100%,那么柴油机仅有80%~90%。

柴油机功率输出小的另一原因是压缩比大,发动机的摩擦损失比汽油机大。

这种摩擦损失与转速成正比,不能期望通过增加转速来提高功率。

转速最高的汽油机每分钟可运转10000次以上(如赛车发动机),而柴油机的最高转速却只有5000r/min。

当今柴油机的技术水平表现为:优良的燃烧系统;采用4气门技术;超高压喷射;增压和增压中冷;可控废气再循环和氧化催化器;降低噪声的双弹簧喷油器;全电子发动机管理等,集中体现在以采用电控共轨式燃油喷射系统为特征的新一代柴油机上。

新技术:笨重、噪音大、喷黑烟,令许多人对柴油机的直观印象不佳,经过多年的研究和新技术应用,现代柴油机的现状已与往日不可同喻。

现代柴油机一般采用电控喷射、共轨、涡轮增压、涡轮增压中冷、米勒循环等技术,在重量、噪音、烟度方面已取得重大突破,达到了汽油机的水平。

(1)电控喷射系统在电控喷射方面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是控制空燃比(汽油与空气的比例),而柴油机的电控喷射系统则是通过控制喷油时间来调节负荷的大小。

柴油机电控喷射系统由传感器、ECU(控制单元)和执行机构三部分组成。

其任务是对喷油系统进行电子控制,实现对喷油量以及喷油定时随运行工况的实时控制。

采用转速、温度、压力等传感器,将实时检测的参数同步输入计算机,与ECU储存的参数值进行比较,经过处理计算按照最佳值对执行机构进行控制,驱动喷油系统,使柴油机运作状态达到最佳。

(2)共轨技术共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。

ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。

在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。

由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。

油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。

此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。

为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称为“共轨”的技术。

(3)涡轮增压技术3.1 两级涡轮增压技术以往的柴油机采用的是一级涡轮增压技术,其产生的压力相对较低,使压缩进汽缸的空气量有限,汽缸中的燃料不能充分燃烧。

这不仅浪费了大量的燃料,也使柴油机的废气排放量偏高。

瓦锡兰集团和MAN柴油机公司都成功开发出新型的涡轮增压技术,通过使用两级涡轮增压器来增大压力,增加汽缸中的空气量,解决一级涡轮增压器压力不足的问题。

两级涡轮增压系统是由两个大小不同的涡轮增压器串联组成。

其工作原理是:利用发动机工作产生的废气的能量,驱动体积较小、增压度较高的涡轮增压器,然后再驱动体积较大的、增压度较低的涡轮增压器。

低压比涡轮增压器的压缩机将周围的空气压缩,然后经过一个直接相连的冷却器,将压缩后的空气传送到高压比涡轮增压器的压缩机中;在此之前被压缩过的空气再次被压缩,再经过一个空气冷却器,传送到发动机汽缸。

经过两次压缩,可以大大增加进入汽缸的空气量,从而使发动机中的燃料燃烧更充分,大大提高发动机的输出功率和功率密度,并大幅减少有害气体的排放量。

该技术能大幅提高柴油机的效率,输出功率和功率密度能够提升近10个百分点,同时降低燃油消耗和二氧化碳排放量。

3.2 VTA(Variable Turbine Area)涡轮增压技术涡轮增压柴油机的最大优点是它可实现小排量、高功率、大扭矩,尤其是其扭矩输出增加明显。

但由于涡轮介入程度取决于转速高低,在柴油机低负荷和低速运行下,涡轮增压器不能以最大的效率工作,因而压缩至汽缸内的空气量有限,不能使燃料充分燃烧。

这是传统涡轮增压技术的严重缺陷。

MAN柴油机公司开发了VTA涡轮增压技术,有效地解决了这一问题。

VTA技术使得柴油机处在任何负荷和速度运行时,都能根据燃油的喷入量自动、持续、精确地匹配压缩空气的进入量,解决了传统涡轮增压器只能在事先设定的发动机负荷点实现最大效率的问题。

这大大提高了燃料燃烧的效率,节约了燃油,大幅削减了碳氢化合物、二氧化碳、煤烟的排放量。

据测算,其燃油节约量为4克/千瓦时。

如果全世界所有船舶的发动机都使用VTA技术,那么每年将减少排放约790万吨二氧化碳。

MAN柴油机公司已经成功地将VTA技术应用到大型涡轮增压器上,该涡轮增压器将安装在燃烧重质燃油的大型柴油机上。

大连船用柴油机有限公司生产的6S50ME-B型柴油机和上海中船三井造船柴油机有限公司生产的SK80ME-C型柴油机,都将安装采用VTA技术的高效废气涡轮增压器。

(4)涡轮增压中冷技术柴油机的涡轮增压中冷技术就是当涡轮增压器将新鲜空气压缩经中段冷却器冷却,然后经进气歧管、进气门流至汽缸燃烧室。

有效的中冷技术可使增压温度下降到50℃以下,有助于减少废气的排放和提高燃油经济性。

(5)米勒循环技术米勒循环技术是提高柴油机效率的重要技术,但是该技术自身存在缺陷,在低负荷运行时排烟量较大。

Mak公司将Miller循环技术和高增压技术相结合,开发出LEE(Low Emission Engine,低排放发动机)技术,该技术已经在M32C Mak发动机系列使用。

使用LEE技术的发动机,在不降低发动机效率的前提下,能将氮氧化物的排放水平降低30%,超过了Tier II的排放要求。

为了减少发动机在低工况条件下可见煤烟的排放量,LEE技术还使用了FCT(Flexible Camshaft Technology,柔性凸轮轴技术)技术。

FCT 技术能够保证发动机在低工况运行时燃料系统和空气系统的适时变化,通过提前喷油启动和增加喷射压力来改善燃烧过程,同时也将煤烟排放量降低了50%。

改变气阀正时功能关闭米勒循环,可将煤烟排放再减少25%。

因此,MaK公司的FCT技术可将柴油机低工况运行时的煤烟排放量减少75%,同时在过渡工况中提高发动机性能。

罗尔斯-罗伊斯公司也将米勒循环技术与提高压缩比率技术相结合,避免了米勒循环技术自身存在的缺陷,成功开发出清洁发动机。

该发动机能够满足国际清洁设计标准,能将氮氧化物的排放量降低20%。

相关主题