《工程热力学》课程教案*** 本课程教材及主要参考书目教材:沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册:严家騄、余晓福著,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:华北电力大学动力系编,热力实验指导书,2001参考书:曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12王加璇等编著,工程热力学,华北电力大学,1992年。
朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。
曾丹苓等编著,工程热力学(第一版),高教出版社,2002年全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿著郭航、孙嗣莹等译,工程热力学,科学出版社,2002年。
何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4概论(2学时)1. 教学目标及基本要求从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。
2. 各节教学内容及学时分配0-1 热能及其利用(0.5学时)0-2 热力学及其发展简史(0.5学时)0-3 能量转换装置的工作过程(0.2学时)0-4 工程热力学研究的对象及主要内容(0.8学时)3. 重点难点工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法4. 教学内容的深化和拓宽热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。
5. 教学方式讲授,讨论,视频片段6. 教学过程中应注意的问题特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。
另,用例应尽量采用较新的事实和数据。
7. 思考题和习题思考题:工程热力学的宏观研究方法与微观方法的比较作业: (短文,一、二页即可)网络文献综述——能源利用与工程热力学8. 师生互动设计讲授中提问并启发讨论:从本课程教材的四大部分的标题看,对于工程热力学的研究内容有没有一个初步的认识(可以“猜想”)?知道热力学第一、第二定律吗?第三、第零定律呢?请举例并比较:宏观研究方法和微观研究方法。
你认为你(本专业的学生)将来会“干什么”?9. 讲课提纲、板书设计绪论0-1 热能及其利用★视频片段:人类用能历史能源——为人类生产与日常生活提供各种能量和动力的物质资源自然能源——风能,水能,太阳能,地热能,潮汐能,核能,燃料化学能等可见:从自然能源中获取能量的主要形式是热能(仅风能、水能、潮汐能是机械能形式—指流体的动能和位能)热能利用的两种基本方式:——直接利用[举例和请学生举例]——间接利用[举例和请学生举例]0-2 热力学及其发展简史18世纪中叶,蒸气机出现,开始热→功(机械能)研究;第一类永动机不成功,总结出Law I;焦耳实验,有了热—功当量概念,开始形成热力学;第二类永动机不成功,总结出Law II;1912年,研究低温现象,Law III(“0 K达不到”);加上Law 0(关于热平衡概念,温度概念及温标建立)四个基本定律,构成热力学的理论基础。
随着生产发展,热力学形成已一百多年,作为经典热力学,已很成熟。
分支:理论热力学,工程热力学,统计热力学,化学热力学,非平衡热力学,生物热力学…甚至用热力学理论于社会学/经济学方面。
0-3 能量转换装置的工作过程图1 ★视频片段:蒸汽发电厂★热机工作示意图如图1所示0-4 工程热力学研究的对象及主要内容一、研究对象热力学研究热现象—与物质热运动有关的现象。
热运动的广泛性和特殊性:—热运动无时无处不在,人类利用热能历史悠久(直接,或转换为其它形式)。
—热能为一方,其它所有非热能形式能量为另一方(机、声、光、电、磁等),可相互转换。
转换前后数量相等(Law I:能量转换与守恒)。
但机械能等可100%地、无代价地转换为热能,反之则不然(Law II:热过程之方向性)。
[例:汽车排尾气;现代火电厂热效率仅40+%]二、研究内容1.热能与其它能量间相互转换的基本规律——主要Law I、II,此乃本课程主要内容。
2.工质的热力性质——能量的利用/转换,需通过工作物质即工质及热力设备来完成。
3.提高热力设备效率的途径——从工程实际应用来说,此为最终目的。
** 请学生对照教材的四大部分的标题,体会工程热力学的研究内容(尤其是前三大部分):①热力学基本定律;②工质热力性质;③(热力设备中的)热力过程及循环;④化学热力学基础。
三、研究方法可有二种研究方法——微观的和宏观的。
工程热力学用宏观的研究方法。
优点——可靠:以大量观察/实验所得经验定律为依据,故只要推论无误,则结论亦可靠。
而经验定律是大量经验(观察/实验)之归纳总结,其可靠性体现在至今未有反例。
缺点——①不能说明其所以然(何以“守恒”?何以有“方向性”?);②应用有局限:上不能推广至茫茫宇宙,下不能深入至物质内部个别分子/原子的表现——看不到,去不了,无经验。
统计热力学则恰可弥补其缺点——可说明“所以然”。
但也有缺点:与物质结构模型有关,而模型是近似的。
[例:判断人的健康:可宏观—体温等;也可微观—化验等]四、课程与本专业的关系热能与动力工程专业培养目标——德智体全面发展,掌握现代能源科学、信息科学和管理科学技术,在热能与动力工程领域从事设计、运行、自动控制、信息处理、环境保护、清洁能源利用和新能源开发等工作的基础扎实、知识面广、创新能力强的复合型人才工程热力学是本专业(以及其他相关专业)主要的专业基础理论课之一(另二门同类课程:流体力学、传热学)五、单位制国际单位制SI。
法定计量单位——以SI为基础。
SI与公制/英制间的换算,也需有所了解/应用。
六、本课程的学习方法建议根据本课程是一门专业基础理论课程的特点,建议在学习中掌握几个“基本”:基本概念,基本定律,基本方法,基本应用。
抓好几个环节:预习/听课;笔记/复习;习题/小结。
第一部分热力学基本定律第一章基本概念及定义(4学时)1. 教学目标及基本要求了解热力系的定义;平衡状态的概念、平衡条件;掌握基本状态参数的定义、计量及不同单位间的换算;掌握准平衡过程的定义,理解提出准平衡过程概念的意义和作用。
2. 各节教学内容及学时分配1-1 热力系(0.5学时)1-2 热力系的描述(0.5学时)1-3 基本状态参数(1.5学时)1-4 状态方程,状态参数坐标图(1学时)1-5 热力过程及循环(0.5学时)3. 重点难点热力系统;状态及平衡状态;状态参数及其特性;可测的基本参数;热平衡及热力学第零定律;状态参数坐标图;热力过程和循环;准平衡过程;状态量和过程量;尺度量和强度量。
4. 教学内容的深化和拓宽概念和认识:各种实际的正/逆热力循环(动力循环、制冷循环)及其作用。
从教材的“计算机应用、工程设计及问题讨论”中选择一题进行讨论和引导。
5. 教学方式讲授,讨论,.ppt幻灯6. 教学过程中应注意的问题注意:复习《绪论》中关于热力学研究方法的内容,说明热力学状态参数是宏观参数;重点说明准平衡过程概念的理论意义和实用意义。
7. 思考题和习题思考题:教材的课后自检题(选一、二题在课堂上讨论)习题:教材习题第一章2~6, 12, 15(可变)8. 师生互动设计提问并启发讨论:观察过某个热力系统的状态变化吗?留意过系统状态变化伴随有系统与外界的能量交换吗?思考过状态变化与能量交换间的联系吗?用过压力计、温度计吗?了解温度的概念吗?对照热力学Law 0,讨论:是否所有事物都有“若A=B且A=C则必有B=C的规律”?[例:ABC三个班足球或歌咏比赛。
引导得出结论:状态量才有此规律]请学生举例:尺度量,强度量请学生举例:热力过程、热力循环如爆炸这样的过程,能不能作准平衡过程处理?为什么?9. 讲课提纲、板书设计第一部分热力学基本定律第一章基本概念及定义1-1 热力系—热力学分析的对象★.ppt图示:热力系统概念外界(环境)——除热力系以外的外部世界,但一般仅指与热力系有关(有相互作用:W功/Q热/m质交换)的部份。
界面(边界)——可以是实际存在的,亦可是假想的。
分析:1. 热力系的状态及状态变化(状态——热力状态)怎样描述?如何变?变的规律?2. 热力系与外界的相互作用(能/质交换)——交换了什么?谁给谁?数量?3. 以上二方面的联系——状态变化乃因与外界有作用,反之与外界作用必导致系统改变状态。
则其间关系如何?能否通过了解热力系的状态变化,而得知其与外界的能量交换?分类:与外界作用情况:开口系,封闭系热力系内部情况:平衡/非平衡系,均匀(单相)/非均匀,单元/多元,…特殊:绝热系,独立系;热源(冷源),功源;…针对不同问题,采用不同系统,可方便分析。
1-2 热力系的描述(描述——说明该热力系的性质)一、热力系的状态,平衡状态,状态参数工程热力学 Engineering Thermodynamics 教案状态(热力(学)状态)——热力系在某瞬间所呈现的宏观物理状况。
状态参数——描述热力系状态的参数。
虽然微观上是与物质微粒热运动——(气体)分子疏密、运动剧烈程度——有关的量,但(记得!)热力学中只用宏观量:p ,V ,T ,U ,…。
有时也引入一些外部参数作为状参如系统整体的速度、高度等。
平衡状态(概念、定义)★ .ppt 图示:气缸的热、力平衡** 提示学生不要只背定义,而应着重注意3点:(1) 热/力平衡,条件是温/力差消失;(2) 热力系的平衡,意味着所有的不平衡势差已消失;平衡/非平衡热力系,其各状态参数有/无确定值。
(3) 提出“平衡状态”概念的意义,在于易研究(可用确定的参数值描述之,进而可分析/计算之)。
虽然实际工程问题中的热力系很少是平衡状态的——毋宁说正是利用了不平衡(即平衡被破坏,系统发生状态变化)来实现能量交换的——但一定条件下,可视实际状态变化过程中的各点为接近平衡态。
有误差可修正。
二、状态参数的特性★ .ppt 图示:系统的尺度量和强度量;“微团”状态参数可分为二大类。
尺度量——与系统所含物质数量(m, n )有关的量,具可加性(m, n, U, S, …) 强度量——与系统所含物质数量无关,在“点” 上定义的量,无可加性(p, T,…)(“点”——含足够分子的微团,非几何上的点)比参数——尺度量对m (或n )的微商,具强度量性质比体积 m V δδυ=均匀系 mV =υ 比热力学能 m U u δδ= 状态一定,则状态值一定,即状态参数是状态的单值函数。
确定状态参数的函数是状态函数(或谓点函数)。