温度的PID 控制一.温度检测部分首先要OK. 二、PID 调节作用 PID 控制时域的公式))()(1)(()(⎰++=dtt de Td t e Ti t e Kp t y 分解开来:(1) 比例调节器y(t) = Kp * e(t)e(k) 为当前的温差(设定值与检测值的插值) y(k) 为当前输出的控制信号(需要转化为PWM 形式)# 输出与输入偏差成正比。
只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时的特点。
但是, Kp 过大会导致动态品质变坏,甚至使系统不稳定。
比例调节器的特性曲线. (2) 积分调节器y(t) = Ki * ∫(e(t))dt Ki = Kp/Ti Ti 为积分时间#TI 是积分时间常数,它表示积分速度的大小,Ti 越大,积分速度越慢,积分作用越弱。
只要偏差不为零就会产生对应的控制量并依此影响被控量。
增大Ti 会减小积分作用,即减慢消除静差的过程,减小超调,提高稳定性。
(3) 微分调节器y(t) = Kd*d(e(t))/dt Kd = Kp*Td Td 为微分时间#微分分量对偏差的任何变化都会产生控制作用,以调整系统输出,阻止偏差变化。
偏差变化越快,则产生的阻止作用越大。
从分析看出,微分作用的特点是:加入微分调节将有助于减小超调量,克服震荡,使系统趋于稳定。
他加快了系统的动作速度,减小调整的时间,从而改善了系统的动态性能。
三.PID 算法:由时域的公式离散化后可得如下公式:y(k) = y(k-1)+(Kp+Ki+Kd)*e(k)-(Kp +2*Kd)*e(k-1) + Kd*e(k-2)y(k) 为当前输出的控制信号(需要转化为PWM形式)y(k-1)为前一次输出的控制信号e(k) 为当前的温差(设定值与检测值的插值)e(k-1) 为一次前的温差e(k-2) 为二次前的温差Kp 为比例系数Ki = Kp*T/Ti T为采样周期Kd = Kp*Td/T四.PID参数整定(确定Kp,Ts,Ti,Td):温度控制适合衰减曲线法,需要根据多次采样的数据画出响应曲线。
所以需要通过串口将采样时间t, 输出y(t)记录下来,方便分析。
1)、不加入算法,系统全速加热,从常温加热到较高的温度的时间为Tk, 则采样时间一般设为 T = Tk/10。
2)、置调节器积分时间TI=∞,微分时间TD=0,即只加比例算法:y(k) = y(k-1)+Kp*e(k)比例带δ置于较大的值。
将系统投入运行。
(δ = 1/Kp)3)、待系统工作稳定后,对设定值作阶跃扰动,然后观察系统的响应。
若响应振荡衰减太快,就减小比例带;反之,则增大比例带。
如此反复,直到出现如图所示的衰减比为4:1的振荡过程时,记录此时的δ值(设为δS),以及TS 的值(如图中所示)。
当采用衰减比为10:1振荡过程时,应用上升时间Tr替代振荡周期TS计算。
系统衰减振荡曲线图中,TS为衰减振荡周期,Tr为响应上升时间。
据表中所给的经验公式计算δ、TI及TD的参数。
大致计算出Kp,Ti,Td后代入公式,然后完善算法。
让系统运作多测试几次。
直到满意为止。
以下是网上找的一个示例程序#include<reg51.h>#include<intrins.h>#define N0 40536#define nop() _nop_()#define uchar unsigned char#define uint unsigned int/*程序中变量数组定义*/uchar idata table[]={"Real-time Temp:"};//第一行显示"Real-time Temp:"uchar idata table1[5];uchar data1,kp,ki,kd;uint t,hightime,count; //占空比调节参数uint rltemp,settemp=350;int e1,e2,e3,duk,uk;/*引脚定义*/sbit EOC=P2^6;sbit OE=P2^5;sbit START=P2^7;sbit lcden=P3^2;sbit lcdrw=P3^1;sbit lcdrs=P3^0;sbit pwm=P3^3;/******************************延时子程序*******************************/void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=29;y>0;y--);}/******************************LCD忙检测*******************************/ bit lcd_busy(){bit result;lcdrw = 1;lcdrs = 0;lcden = 1;nop();nop();nop();nop();result = (bit)(P0&0x80);lcden = 0;return(result);}/****************************** LCD写命令子程序*******************************/ void write_com(uchar com){while(lcd_busy());//忙等待lcdrs = 0;lcdrw = 0;P1 = com;delay(5);lcden = 1;delay(5);lcden = 0;}/****************************** LCD写数据子程序*******************************/ void write_data(uchar date){while(lcd_busy()); //忙等待lcdrs = 1;lcdrw = 0;P1=date;delay(5);lcden = 1;delay(5);lcden = 0;}/******************************LCD初始化*******************************/ void lcd_init(){lcden = 0;write_com(0x38);delay(5);write_com(0x0f);delay(5);write_com(0x06);delay(5);write_com(0x01);delay(5);write_com(0x80);delay(5);write_com(0x01);}/****************************** 定时器初始化*******************************/ void time_init(){EA = 1;ET0 = 1;ET1 = 1;TR0 = 1;TR1 = 1;TMOD = 0x11;TH0 = N0/256;TL0 = N0%256;TH1 = 0X3C;TL1 = 0XB0;}/****************************** PID算法系数装载*******************************/ void Pid_init(){hightime= 0; //输出的占空比e1 = 0; //本次的温度差e2 = 0; //前一次的温度差e3 = 0; //两次前的温度差kp = 10; //需要根据试验确定参数ki = 5; //需要根据试验确定参数kd = 5; //需要根据试验确定参数}/******************************温度比较PID算法*******************************/void pid_ys(){if(rltemp<settemp) // 如果实际温度小于设定温度值{if(settemp-rltemp>20) // 如果相差20度(根据实际情况确定是多少){hightime=100; //全速加热}else //否则运行PID算法进行平滑加热{e1 = settemp-rltemp;duk=(kp*(e1-e2)+ki*e1+kd*(e1-e2*2+e3))/10; // 式(1)因为Kp是10,输入放大了10倍,所以duk的输出结果需要除以10uk = uk+duk;/*****************************式(1)与上面提到的公式类似y(k) = y(k-1)+(Kp+Ki+Kd)*e(k)-(Kp +2*Kd)*e(k-1) + Kd*e(k-2) 可以写成y(k)-y(k-1)=(kp*(e(k)-e(k))+ki*e(k)+kd*(e(k)-e(k-1)*2+e(k-2)) 式(1)中duk 相当于y(k)-(k-1)*****************************/if(uk>100)uk = 100; //设置饱和控制,else if(uk<-100)uk = -100;if(uk<0){hightime=-uk;}else{hightime=uk;}e3 = e2;e2 = e1;}}if(rltemp>=settemp) // 如果实际温度大于设定值{if(rltemp-settemp >0) //只要实际温度与设定值不相等{hightime=0; //停止加热}else /{e1 = rltemp-settemp;duk=(kp*(e1-e2)+ki*e1+kd*(e1-e2*2+e3));uk = uk+duk;if(uk>100)uk = 100;else if(uk<-100)uk = -100;e3 = e2;e2 = e1;}}}/******************************主函数*******************************/void main(){uint i;time_init();//定时器初始化Pid_init(); // PID初始化lcd_init();// LCD初始化table1[5]=0x43;table1[4]=0xdf;table1[2]=0x2e; //小数点摄氏度符号ASCII码for(i=0;i<15;i++) //带循环第一行显示"Real-time Temp:"{write_data(table[i]);delay(20);}while(1){t=data1*196/100;table1[3]=(t%100)%10+0x30;table1[1]=(t%100)/10+0x30;table1[0]=t/100+0x30; //以上温度数据转化rltemp = t; //给PID算法装载实际值write_com(0x80+0x45);//写LCD第二行的初地址for(i=0;i<5;i++) //该循环显示温度值{write_data(table1[i]);delay(20);}pid_ys();//运行温度比较PID算法}}/******************************温度采集转换的定时中断0.5s刷新一次数据*******************************/void timer0() interrupt 1{uint j;j++;if(j==20){OE = 0;START = 0;_nop_();START = 1;_nop_();START = 0;while(EOC==0);OE = 1;_nop_();data1 = P0;_nop_();OE = 0;j = 0;}TH0=N0/256;TL0=N0%256;}/****************************** PWM波输出的定时中断*******************************/ void timer1() interrupt 3{if(++count<=(hightime))pwm=0;else if(count<=100){pwm=1;}elsecount=0;TH1=0x3c;TL1=0xb0;}。