当前位置:文档之家› 基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

三、系统硬件设计1、调速系统总体分析设计以单片机作为控制的核心,采用H桥电路芯片L298完成电机驱动主电路,霍尔器件构成速度采集并转换为脉冲电路,PWM模拟发生器,通过LCD显示器输出电机的转速与3*4的键盘组成人机接口电路实现起动、加速、减速、反转、制动的功能。

2、PWM信号发生电路PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。

PWM可以应用在许多方面,比如:电机调速、温度控制、压力控制等等。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转所示:2-8又被称为“开关驱动装置”。

如图PWM速。

也正因为如此,图二: PWM方波设电机始终接通电源时,电机转速最大为Vmax,设占空比为D= t1 / T,则电机的平均速度为Va = Vmax * D,其中Va指的是电机的平均速度;Vmax 是指电机在全通电时的最大速度;D = t1 / T是指占空比。

由上面的公式可见,当我们改变占空比D = t1 / T时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。

严格来说,平均速度Vd 与占空比D并非严格的线性关系,但是在一般的应用中,我们可以将其近似地看成是线性关系。

3、单元模块设计㈠驱动主电路模块功率放大驱动芯片有多种,此次我们所用的芯片为L298主控芯片。

L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7 V电压。

4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。

输出L298N引脚图脚下管的发射极分别单独15脚和1,可驱动电感性负载。

5 A.2电流可达引出以便接入电流采样电阻,形成电流传感信号。

L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。

5,7,10,12脚接输入控制电平,控制电机的正反转。

EnA,EnB接控制使能端,控制电机的停转。

在实际运用中由于存在从强电到弱电的连接,为保护电路,L298N的输入端in1和in2都必须采用图中所示的光耦合隔离电路进行隔离。

图中二极管的作用是消除电机的反向电动势,保护电路,因此采用整流二极管比较合适。

PWM控制信号由in1、in2输入。

如果in1为高电平,in2为低电平时电机为正向转速,反之in1为低电平,in2为高电平时,电机为反向转速。

本设计将in2直接接地,即采用单向制动的方式。

如下图三所示:图三:L298驱动电路⑵人机接口电路①接口电路的扩展80C51单片机与可编程并行I/O接口扩展接口8155A,该连接可以直接连接而不需要添加任何逻辑器件,其接口电路图如图三所示。

在图中,80C51单片机P0输出的低8位地址不需另加锁存器而直接与8155A的AD0-AD7相连,即作为低八位地址总线又作数据总线。

地址锁存直接用ALE在8155A锁存。

8155A的CE端与P2.7相连,IO/M端与P2.0相连。

当P2.7为低电平时若P2.0=1,访问8155A 的I/O口;若P2.0=0,访问8155A的RAM单元,由此可以得到8155A的地址编码如下:RAM字节地址 7E00—7E00HI/O口地址(命令/状态口 7F00H,PA口 7F01H,PB口 7F02H,PC口 7F03H,)7F05H 位八高器时定,7F04H 位八低器时定图四:人机接口电路②矩阵键盘电路本设计采用4*3矩阵键盘,它们分别与P1口相连,作为设定速度的输入。

12个按键功能描述:0~9的10个数字键,next和ok两个功能键。

连接在P1端口进行扫描,ok键就是确认键,功能是将设置好参数后退出设置模式,next键按下后就是将光标切换到下一个要设置的位值。

其电路如图五所示。

图五:键盘电路③LCD显示电路与单片机的接口设计本次设计中采用的LCD12864是一种内置8192个16*16点汉字库和128个16*8点ASCII字符集图形点阵液晶显示器,它主要由行驱动器/ 列驱动器及12816×(16个2×7.5全点阵液晶显示器组成。

可完成图形显示,也可以显示32×.点阵)汉字,与外部CPU接口采用并行或串行方式控制。

本设计采用并行方式控制,LCD与单片机的通讯接口电路如图2.6所示,采用直连的方法,这样设计的优点是在不影响性能的条件下还不用添加其它硬件,简化了电路,降低了成本。

图六: LCD显示电路与单片机的接口④按键电路和消除抖动键盘中按键的开关状态,通过一定的电路转换为高、低电平状态,如图七所示。

按键闭合过程在相应的I/O口形成的一个负脉中,如图八所示。

闭合和释放过程都要经过一定的过程才能达到稳定,这一过程是出于高、低电平之间的一种不稳定状态,称为抖动。

抖动持续时间的长短与开关的机械特性有关,一般在5ms~10ms之间。

为了避免CPU多次处理按键的一次闭合,应采取措施消除抖动。

消除抖动的方法有两种,一种是采用硬件电路来实现,如用滤波电路和双稳态电路等;另一种是利用软件来实现,即当发现有键按下时,延时10~20ms再查询是否有键按下,若没有键按下,说明上次查询结果为干扰或抖动;若有键按下,则说明闭合键已稳定,即可判断其键码。

图八按键电路图七:⑤电源模块线性三端稳压器件7805由于内部电流的限制,以及过热保护和安全工作区的保护,使得它基本上不会损坏。

提供足够的散热片,能够保证输出最大电流为1.5A,电路简单,稳定.调试方便,价格便宜,适合于对成本要求苛刻的产品,电路中几乎没有产生高频或者低频辐射信号的元件,工作频率低,EMI等方面易于控制.并采用磁珠对模拟地与数字地进行隔离,电路如图九所示。

图九:电源模块、速度测量电路设计4测其电路图如图十所示。

速度检测电路是由开关型霍尔传感器和磁钢组成,从量电机转速的第一步就是要将电机的转速表示为单片机可以识别的脉冲信号,体具有结构牢固、而进行脉冲计数。

霍尔器件作为一种转速测量系统的传感器,积小、重量轻、寿命长、安装方便等优点。

当电机转动时,带动传感器,产生对进行应频率的脉冲信号,经过信号处理后输出到计数器或其他的脉冲计数装置,固定在离反射式黑白码盘转速的测量。

在本次使用中,我们将霍尔传感器3314霍尔传感器就输当码盘转动一圈时,很近的洞洞板上,码盘上固定有微型磁钢,处理。

放大后输入单片机出电平信号,经电压比较器lm339在传感检测电路中将磁钢安装在电所谓磁钢,就是磁钢就是一种有磁性的钢铁。

当磁霍尔传感器连接在电路中,机的转轴上,而霍尔传感器则放在转轴的旁边,此时将输出一钢随转轴经过霍尔传感器时,由开关型霍尔传感器的工作原理知,这样通过高又将输出一个高电平。

而当磁钢离开霍尔传感器后,个低电平信号;低电平的转换,将其送入单片机后就可以测量它的转速。

图十:霍尔传感器部分5、单闭环调速系统的PI控制模块采用PI调节器的单闭环转速反馈系统,即保证了动态稳定性,又保证了静态无静差,很好的解决了动静态之间的矛盾。

但电流得不到限制。

电流负反馈虽然能限制启动电流,但在启动时,启动电流仅在某一瞬间达到最大的允许值,其余的时间都比较小启动过程慢。

同时。

他的机械特性较软,不适合调速,想要启动过程尽可能快。

就应使整个启动过程中的电机始终保持最大的启动转矩。

由上述可知,实现理想过程过程的关键是控制电流波形,图12 生产机械工作工程由图可知,为了达到最佳过渡过程,必须满足:○过渡过程中,尽量能使电枢电流为最大值,过渡过程结束时,尽快使电枢1电流达到稳定值。

○突变到最应使Ud2为了使电枢电流有动态到稳态和由稳态到动态迅速变化,大值,待电枢电流达到要求值欧,在突变到需要值。

四、系统软件设计1、主程序软件设计单片机资源分配:工作寄存器0组㈡R-R 00H-07H 7O数据缓冲区30H-7FHPSW.4(RS=0) PSW.3(RS=0) ;选中工作寄存器0组01P0口地址80HP1口地址 90HP2口地址 A0HP3口地址 B0H堆栈(SP) 81H定时器/计数器控制 TCON 88H定时器/计数器方式控制 TMOD 89H定时器/计数器0 低字节 TL0 8AH 高字节 TH0 8CH定时器/计数器1 低字节 TL1 8BH 高字节 TH1 8DH中断1——PI采样(u)i中断0——A/D采样 P1口预置 WP0口测量值(实测Y)主程序:0000 AJMP STARTSTART: CLR PSW.4CLR PSW.3 ;选中工作寄存器0组CLR CMOV R0,4FH30H, MOV ACLEAR1: CLR AINC ADJNZ R ,CLEAR1 ;清零30-7FH 0 SETBTR0 ;定时器/计数器0工作MOV TMODE ,#01H ;定时器/计数器工作在方式1SETB EA ;总中断开放SETB IT0 ;置INTO为降沿触发SETB IT1 ;置INT1为降沿触发LJMP MAINLJMP CTCOLCALL SAMPLEF=12MHZ,用一个定时器/计数器定时50ms,用R作计数器,置初值14H,到定2osc 时时间后产生中断,每执行一次中断服务程序,让计数器内容减1,当计数器内容减为0时,则到1s。

相关主题