当前位置:文档之家› 实变函数论习题选解

实变函数论习题选解

《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --⊂---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-⊆--;(4)问)()(C B A C B A --=-Y 成立的充要条件是什么?证 (1)∵cB A B A I =-,cc c B A B A Y I =)((对偶律),)()()(C A B A C B A I Y I Y I =(交对并的分配律), ∴)()()()()()(D C B A D C B A D C B A c c cc c Y I I I I I ==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=⊆=Y I Y I I I Y I I 交对并分配律.(2))()()()()()(c c ccD B C A D C B A D C B A I I I I I I I ==--交换律结合律)()()()(D B C A D B C A c Y I Y I I -==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc I Y I Y I I I ===--分配律C B A C B A c Y Y I )()(-=⊆.(4)A C C B A C B A ⊆⇔--=-)()(Y .证 必要性(左推右,用反证法):若A C ⊄,则C x ∈∃ 但A x ∉,从而D ∀,)(D A x -∉,于是)(C B A x --∉; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,∵A C ⊆,∴C C A =I ,如图所示:故)()(C B A C B A --=-Y .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21ΛΛ所成之集的势(基数)为c .证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++=Λ2210对应于一个序列:n a a a a ,,,,210Λ,而每个)0(n i a i ≤≤取自可数集N N Z Y Y }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合Y N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E ΛΛ的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[I Q 排列成 ΛΛ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在ΛΛ,,,,21n r r r 处的值ΛΛ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:ϕ,)),(,),(),(()(21ΛΛαn r f r f r f x f ,则ϕ是单射,而集E C f r f r f r f A n ⊂∈=}]1 ,0[)),(,),(),({(21ΛΛ是全体实数列E 的一个子集,故]1 ,0[C ~E A ⊂,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注 ①若∅=21A A I ,∅=21B B I ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A Y ~21B B Y ;假如21A A ⊂,21B B ⊂,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解 若∅=21A A I ,∅=21B B I ,令⎩⎨⎧∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A Y到21B B Y 的一一对应.若21A A ⊂,21B B ⊂,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211ΛΛΛΛΛΛn B A n B n A ====,),3 ,2( 1:1Λα=+n n n f ,),2,1( :2Λα=n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-⋅=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为ΛΛ , , , ,21n r r r ,而]1 ,0[中的有理数排列为ΛΛ , , , , ,1 ,021n r r r .作其间的对应f 如下:⎪⎪⎩⎪⎪⎨⎧>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ⨯~N ,()N N ⨯∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p⋅=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则cF 2=. 证 ο1.cF 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即⎩⎨⎧-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{⊂=E E M ,}]1 ,0[)({⊂=X E x E χ,则M ~X ,c M 2==X .而F ⊂X ,从而有F ≤X ,即F c ≤2. ο2.c F 2≤.对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而c B 2=,从而有c F G F 2≤=. 综合ο1,ο2立知 cF 2=.附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ⊂⊂,而A ~C ,则B ~C (此结果更便于应用). 5.试证任何点集的内点全体组成的集是开集.证 设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈∀,由内点的定义,存在x 的邻域F I x x x ⊆=),(βα.现作集Y Fx x I G ∈=,则显然G 为开集,且G F⊆0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ⊆∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ⊆.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[Λ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而Y +∞-∞==n n P P ,Y +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{(Λ=k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ⎪⎩⎪⎨⎧∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k k k k Λπ则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (kk k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '. 解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则ΛY Y Y ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ⎩⎨⎧=,2,0i a ⎪⎩⎪⎨⎧=,2,1,0i b (Λ ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设ΛΛn a a a y 21.0=;当G x ∈时,可设ΛΛ2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有ΛΛΛ0200.021n a a a y =右;对于G 的构成区间的左端点左y 有 ΛΛΛ20222.021n a a a y =左.由此可见,G E ⊆,且当E z ∈时,有ΛΛΛ111.0)(2121n a a a y y z =+=右左. ②下证Cantor 集P 中的点都是E 的极限点:对P y ∈∀,由于ΛΛn a a a y 21.0=,取E z k ∈,则ΛΛΛ111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131233131121<⋅=++≤-+++Λ, 故,0 ,0>∃>∀N ε当N k >时,有ε<k31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.③下证G x ∈∀,有E x '∉.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即ΛΛΛ111.021n a a a x =.由Cantor集的构造知:对)( x z E z ≠∈∀,都有 n x z 31≥-,所以,E x '∉; 20.若E x ∉且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ΛΛΛ,于是,E z ∈∀,有m x z 31>-,所以,E x '∉. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证∅≠∞=I 1k k E .证 用反证法:若∅=∞=I1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞=Y I ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E ckΛ=,使得] ,[1b a E nk ck⊇=Y ,即()] ,[\] ,[1b a E b a n k k ==Y . ∴ ] ,[\] ,[1b a E b a nk k ==I,从而∅==I nk k E 1,故∅=n E ,矛盾!附注 更一般地,若非空闭集套}{n E :ΛΛ⊃⊃⊃⊃n E E E 21满足0sup )(,−−→−-=∞→∈n E y x n y x E nρ,则存在唯一的I∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中着名的“压缩映像原理”) 证 由n E 非空,取) ,3 ,2 ,1( Λ=∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+⊃n n E E ,所以,) ,2 ,1 ,0( Λ=⊂∈++m E E x n m n m n ,从而0)(sup ,−−→−=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n −−→−∞→.又由n E 为闭集立知n E x ∈0,从而I ∞=∈10n n E x .存在性得证.下证唯一性:若另有I∞=∈10n n E y ,则) ,2 ,1( 00Λ=∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则 ()αα≥∈∀f E , R 为闭集.证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( Λ=∈n E x n ,满足0lim x x n n=;又由于诸 ] ,[ b a E x n ⊂∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:()Y ∞=∞→+=11lim )(k kn n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ⇒, k ∃使得k x f 1)(+>α,即kn nx f 1)(lim +>α , N ∃⇒当N n >时,kn x f 1)(+>α()()Y ∞=∞→∞→+∈⇒+∈⇒111lim lim k kn n kn n E x E x αα. 另一方面,()Y ∞=∞→+∈11lim k kn n E x αk ∃⇒,使()k n n E x 1lim +∈∞→α, N ∃⇒当N n >时, ()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=⇒α, α>⇒)(x f ,从而)(αE x ∈. 综上可得 ()Y ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证 设F 为闭集,作集) ,2 ,1( }),( {1Λ=<=n F x x G n n ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证:Inn G F =.事实上,由于对任意N ∈n 有n G F ⊂,故有Inn G F ⊂;另一方面,对任意Inn G x ∈0,有 ) ,2 ,1( ),(010Λ=<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ⊂I .综上可知:I nn G F =.附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证 可有两种证法(很麻烦):一种是反证法,即若Y nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但Y nn F x ∉0,从而得出矛盾;另一种证法是:记) ,(b a =∆,证明下述更强的结果:若}{n F 为含于∆内的任一组两两互不相交的闭集列,则Y nn F -∆的势(基数)等于连续势c ,从而立知不可能有Y nn F b a ==∆) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ⊃=<≤<.又记) ,( , ) ,(0201b b a a =∆=∆(非空),则有两种情况: ①若)2 , 1( 2=∆∞=i F n n i Y I中至少有一个空集,比如 21∅=∆∞=Y I n n F ,而∅=∆⊂∆0111I F I I ,所以, 11∅=∆∞=Y In n F , 11∆⊃-∆∞=Y n n F .因此,c F nn=∆≥-∆1Y .问题得证.②)2 , 1( 1=∆∞=i F n n i Y I均不为空集,对)2 , 1( =∆i i ,在Λ , ,32F F 中存在最小的下标)(1i n 使∅≠∆i n i F I )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ∉,从而i n i n i i F F ∆=∆I I )(1)(1为含于开区间i ∆内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交;(ⅱ)Y Y YY21121)(101===⊃⊃i i n i i i i F F I I .对在∆中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I Λ=,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ΛΛ==互不相交;(ⅱ)Y Y Y YY 111121)(0)]([+====⊃⊃N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间∆中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ΛΛ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ∆与Y 2+≥N n n F 的交为空集,则由(ⅱ)知与Y ∞=1n n F 的交也为空集,从而c F i nn=∆≥-∆0Y .问题得证.若不然,则这12+N 个开区间均与Y 2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得Y Y YY ∞=∞==⊃1121)(0)]([i i n j j n F I I n所以,集Y ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注 ①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若Y ii F b a =],[,其中),2,1(Λ=i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证 对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101ΛΛ=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内.记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=∆]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111ΛΛ=⎪⎪⎭⎫⎝⎛++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1Λ为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十 进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开 区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一 完备集,于是,只要证明U G =即可.由U 的定义显见G U ⊂;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a Λ均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0Λ++==n n m a m ,此时x 表示 区间11-n a a Λδ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一 切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7Λ++==n n m a m ,此时x 表示区 间11-n a a Λδ的右端点,它有另一十进位表示:n n i iia 1081011+∑-=,在此表示中一切7≠n a , 因此x 也不可能是这种情况.由此可知U x n aa ⊂∈-11Λδ.综上所证可知U G =.证毕!附注 ①c P =; ②P 在]1 ,0[中不稠密(因∅=)7.0 , 28.0(I P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解 ①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21ΛΛn r r r Q =.对]1 ,0[∈∀x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+.事实上,因为对任意x y >,0)()(≥=-∑<≤yr x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,∅=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数 ⎪⎩⎪⎨⎧≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注 ①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续; (提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ; (提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然)更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k Λ=为n 个非空不交 闭集,∃连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1Λ=),则⎪⎪⎪⎩⎪⎪⎪⎨⎧∉=∈====∑∑. ,),(1),(,,,2,1 , ,)(111Y Λn k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m I Y -+=.证 因1E 、2E 可测,则21E E I 可测,212E E E I -可测,且)()(212212E E m mE E E E m I I -=-.又由()∅=-2121E E E E I I ,得()()()2121212121E E m mE mE E E E m mE E E m I I Y -+=-+=.2.试证可数个零测度集的并仍是零测度集.证 设Y Λ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤⎪⎪⎭⎫ ⎝⎛=≤∑∞=∞=n n n n mE E m mE Y ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ⊆,那么是否一定有21mG mG <?解 不一定成立.例:)2 ,1()1 ,0(1Y =G ,)2 ,0(2=G ,则21G G ⊂,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解 不一定.例 :对]1 ,0[中的所有有理数} , , , ,{21ΛΛn r r r ,作开集如下:Y ∞=++⎪⎭⎫ ⎝⎛+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[⊇G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、Λ21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>⎪⎪⎭⎫ ⎝⎛=I n k k A m .证 由1题可知:)()(212121E E m mE mE E E m Y I -+=.又∵]1 ,0[⊆i A ,∴ 1≤i mA ,n i , ,2 ,1Λ=,而cn i c i ni i A A ⎪⎪⎭⎫⎝⎛===Y I 11,∴∑∑====--=-≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(111Y I0)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ⊂0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证 ①先设E 是有界集,即] ,[b a E ⊆,0*>=q E m .令()] ,[**)(x a E m E m x f x I ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因∅==或}{}{a a E E a I ,E b a E E b ==] ,[I ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =⊆=I I ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-I Y()122121],[*],[*x x x x m x x E m -=≤≤I ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈∆+=,则有x x f x x f ∆≤-∆+)()(,故当0→∆x 时,)()(x f x x f →∆+,即] ,[)(b a C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈∀,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈∃,使得p x f =)(0,即()p x a E m =] ,[*0I . ③当E 无界时,令] ,[][n n E E n -=I ,N ∈n ,则n E ][可测,满足ΛΛ⊆⊆⊆⊆n E E E ][][][21,且有Y ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈∃0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E为有界集:] ,[] ,[][000n n n n E E n -⊆-=I .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==I则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈∃,使得p x f =)(0,即p E m x =0*.附注 若E 可测,0>=q mE ,则 q p p <<∀0 ,,∃可测集E E ⊂1,使p mE =1.7.试作一闭集]1 ,0[⊂F ,使F 中不含任何开区间,但21=mF . 解 仿照Cantor 集的方法构造闭集F : 第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61; 第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G =Y ,各长6131⨯,共长61312⨯⨯; ……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131⨯-n 的开区间,记这12-n 个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--⨯=⨯⨯n n ;将这手续无限进行下去,得一串开集ΛΛ,, , , ,321n G G G G . 令Y ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集;②F 不含任何开区间(疏集); ③F 可测,且由于()21132611132611=-===∑∑∞=-∞=n n n n mG mG , 故21211]1 ,0[=-=-=mG m mF . 附注 ①当第n 次去掉的12-n 个开区间的长度为n51时,则32115121525111=--=⋅-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--⋅n α时,所得开集G 的测度为()ααα-=-⋅==-∞=--∑1113231113231n n mG ,则 α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证 设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈∀,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =⎪⎭⎫ ⎝⎛∞→n n E m .证 ∵∞<∑∞=1n n mE ,∴ , ,0N ∃>∀ε使ε<∑∞=Nn n mE .而Y I Y ∞=∞=∞=∞→⊆=Nn n k k n n n n E E E 1lim ,∴ε<≤⎪⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∞=∞=∞→N n n N n n n n mE E m E m Y lim . 故 0lim =⎪⎭⎫ ⎝⎛∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但⎪⎭⎫ ⎝⎛≠⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m lim lim .解 考察如下集列 ⎪⎩⎪⎨⎧=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11ΛΛn n E n n n显然 ),3,2,1( )2 ,2(Λ=-⊂n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=⎥⎥⎦⎤⎢⎢⎣⎡+--⎥⎥⎦⎤⎢⎢⎣⎡+--==++∞=∞=I I I Y I 为偶数为奇数n n n n n n n n k k n nE E , }0{}0{lim 11===∞=∞=∞=Y YIn n nk k n n E E .(从而n nE lim 不存在)所以,0lim 2lim =⎪⎭⎫ ⎝⎛≠=⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注 一般,若}{n E 为可测集列,且Y ∞=1n n E 有界,则n n n n mE E m ∞→∞→≤⎪⎭⎫ ⎝⎛lim lim ,n n n n mE E m ∞→∞→≥⎪⎭⎫ ⎝⎛lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列,Y ∞==1n n E E,则∑∞=≥1**n n E m E m .证 因Y ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ⊂,且n n E m mF *=.∴Y ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ⊂,且E m mF *=.但F F n n ⊂∞=Y 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(r f E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测? 证 必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈∀α,∃有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而Y ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ∉,2)(=x f .则对任何有理数r ,∅==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答 )(G f E ∈和)(F f E ∈均可测. 证 令Y ∞==1) ,(n n n b a G ,j i ≠时,∅=) ,() ,(j j i i b a b a I,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而Y ∞=<<=∈1)()(n n n b fa E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(G f E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1n n A =.证明:∞=1}{n n A 有极限,并求此极限.证 (1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=⎪⎪⎭⎫ ⎝⎛-=-=-∞→∞=∞=∞=≥∞=∞=∞→I Y Y Y I Y .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→II Y k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→Y YI k kk k kn n n n A A , ∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解 作函数⎩⎨⎧=∞+∈=,0 , ],1 ,0( , )(1x x x f x则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,∃0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]),0[( )()(1N x x g x f ∈≠.故 0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>∀ε,可取闭集E F ⊂=]1 ,[2ε,则 εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证 R ∈∀α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα (Λ ,2 ,1=i ).于是,N ∈∀i ,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()()Y Y ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n−→−μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有 )()(x g x f ≤.证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使f f k n →,a.e.于E (∞→k ),即E E ⊂∃0,f f kn →于0E ,且0)(0=-E E m .令()()f f Eg f E A k n n n →/⎪⎪⎭⎫⎝⎛>=Y Y ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>∀(N ∈n ),则有()()()εε=<+><→/+⎪⎪⎭⎫ ⎝⎛>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA Y , 即0=mA ,而在A E -上有g f n ≤(0E x ∈∀)且f f k n →(0E x ∈∀).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈∀),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证 ∵ f f n −→−μ,且n n g f =,a.e.于E ,则0>∀ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,∴ ()()()εεε≥-≥-⊆≥-f f E f g E f g E n n n n Y .又()()()()0−−→−≥-≤≥-+≥-≤≥-∞→n n n n n n f f E f f E f g mE f g mE εεεε ∴ ()0−−→−≥-∞→n n f g mE ε,即 f g n −→−μ.9.试举例说明:对于叶果洛夫(Egorov )定理,不能加强为除掉一个0测度集外,)(x f n 一致收敛于)(x f .解 构造函数列)}({x f n 如下:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-⋅+-<≤<<+==+++++,1 ,0 , ,)1(1, ,1 ,0 ,)2( ,0 ,0 )(111111112121x x x n n x x x n x x f n n n n n n n n 则)(x f n 是]1 ,0[=E 上的连续函数列,必可测,且 )(0)(lim x f x f n n ==∞→于]1 ,0[=E .下面证明:对任一0 ,00=⊂mE E E 时,)}({x f n 在0E E -上不会一致收敛. 取210=ε,无论N 取得多么大,总可取N N n >+=1,令[)02131 ,E A n n -=++,则显然A 非空(为什么?).但A x x f N ∈=+ ,1)(1, A x x f x f x f N N ∈>==-++ ,1)()()(011ε.所以,)}({x f n 在0E E -上不一致收敛.由此可知:叶果洛夫定理不能加强为:除掉一个0测度集外,)(x f n 一致收敛于)(x f .10.几乎处处有限的可测函数列)}({x f n )(x f −→−μ的充要条件是:对任何正数σ和ε,存在N ,当N m N n >> ,时,()εσ<≥-m n f f mE (即它是依测度的Cauchy 列). 证 必要性由)()(x f x f n −→−μ,则N n N >∃>>∀ , ,0 ,0εσ时,()22εσ<≥-f f mE n . 又易知:()()()22σσσ≥-≥-⊂≥-f f E f f E f f E m n m n Y ,则 ()()()22σσσ≥-+≥-≤≥-f f E f f E f f mE m n m n , 从而当N m N n >> ,时,()εσ<≥-m n f f mE .下证充分性:先找出一个子序列f x f k n k −−→−∞→)}({,a.e.于E . 任取数列+∞<>∑∞=1,0 },{i i i i ηηη.由题设条件可知:存在k n ,使得()) ,2 ,1 ; ,2 ,1( 21ΛΛ==<≥-+m k f f mE km n n kk k η,从而可取+∞↑kn ,且有 ()kn n kkk f f mE η<≥-+211.对这串}{kn 作P Q ,:()IY ∞=∞=≥-=+1211i ik n nkk k f f E Q ,()YI ∞=∞=<-=-=+1211i ik n n kk k f fE Q E P .令()Y ∞=≥-=+ik n ni kk k f f E R 211,则 ΛΛ⊃⊃⊃⊃⊃+121n n R R R R,I ∞==1i i R Q .因此,()0lim limlim 211=≤≥-≤=∑∑∞=∞→∞=∞→∞→+ik ki ik n ni i i kk k f f mE mR mQ η,所以,0=mQ .下面证明)}({x f k n 是P 上的收敛基本列.记 ()Y YI∞=∞=∞==<-=+11211i ii ik n n A f f E P kk k ,则 Λ⊂⊂⊂++21i i iA AA .若P x ∈,则存在0i ,使得Λ⊂⊂∈+100i i A A x .对任给的0>ε,必有0i i >,使得ε<-121i ,故对一切Λ ,2 ,1 ,=>m i l ,有ε<=≤-≤-≤--∞=∞==∑∑∑+++1212111i i j j ij n n mij n n n n j j j j m l l f f f f f f . 所以,)}({x f kn 在P 上的收敛于)(x f ,其中)( )(lim )(P x x f x f k n k ∈=∞→.显然,f f k n −→−μ,于是,对任何正数σ和ε,存在N ,当N n N n k >> ,时,()22εσ<≥-k n n f f mE ,()22εσ<≥-f f mE kn . 而()⊂>-σf f E n ()Y 2σ≥-k n n f f E ()2σ≥-f fE kn ,所以,当N n >时, ()εσ<>-f f mE n ,即 f f n −→−μ于E .四、Lebesgue 积分1.设)()(x g x f 、都是E 上的可测函数,)()(E L x g ∈,且在E 上几乎处处成立)()(x g x f ≤,问在E 上)(x f 是否一定可积?解 )(x f 未必可积,因)(x f 不一定满足非负性.例如:取]1 ,0[=E ,0)(=x g ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∈-∈-∈-=-.0 ,0 ], ,( ,2, ], ,( ,4],1 ,( ,2)(12121214121x x x x x f n n n ΛΛ 则显然 )()(E L x g ∈,)()(x g x f ≤,但-∞=⋅-=∑⎰∞=1]1 ,0[ 21)2(d )(n n n m x f 不可积. 2.设在Cantor 集P 上定义函数)(x f 为零,而在P 的补集中长为n31的构成区间上定义)(x f 为n (N ∈n ),试证L x f ∈)(,并求积分值. 解 令 n e 为P 的补集G 中长为n 31的各构成区间之并,则 Y ∞==1n n e G ,n me n n 321-=. 令 ⎪⎩⎪⎨⎧-∈=∈==, ]1 ,0[ ,0),, ,2 ,1( ,)(1Y Λn i i i n e x n i e x i x ϕ 则简单函数列)}({x n ϕ满足 )()()()(021x f x x x n ≤≤≤≤≤≤ΛΛϕϕϕ,且 f x n →)(ϕ.∴ 33232lim d )( lim d )( 1111]1 ,0[ ]1 ,0[ =⋅=⋅==∑∑⎰⎰∞=-=-∞→∞→n n n ni i i n n n n i m x m x f ϕ.即 ]1 ,0[L f ∈,且3d )( ]1 ,0[ =⎰m x f .3.设0)(≥x f 为可测函数,令 ⎩⎨⎧>≤=,)(,0 ,)( ),()]([N x f N x f x f x f N 若若 试证明⎰⎰=EEN Nm x f m x f d )( d )]([ lim .证 由题设知:ΛΛ≤≤≤≤≤N f f f ][][][021,且 f f N N −−→−∞→][,则由勒维(Levi )定理可知 ⎰⎰=E E N Nm x f m x f d )( d )]([ lim.4.设从]1 ,0[中取n 个可测子集n E E E 、、、Λ 21,假定]1 ,0[中任一点至少属于这n 个子集中的p 个.试证:必有一集,它的测度不小于n p.证 令 i E 的特征函数为)(x iE χ,则⎰⎰⎰+++=+++11 01 021d )(d )(d )(21x x x x x x mE mE mE n E E E n χχχΛΛp x p x x ni E i =≥⎪⎪⎭⎫ ⎝⎛=⎰⎰∑=1 0 1 0 1d d )(χ. 令 } , , , m ax {21n mE mE mE mE Λ=,则 1≤mE ,从而 p mE mE mE mE n n ≥+++≥⋅Λ21, ∴ npmE ≥.5.勒维(Levi )定理中去掉函数列的非负性假定,结论是否成立?解 Levi 定理中函数列的非负性条件是必要的,不可去,否则结论未必成立.例如:Λ,2 ,1 ,0 ,0 ],1 ,1[,0 ,)(11=⎩⎨⎧=-∈≠-=n x x x x f n x n ,⎩⎨⎧=-∈≠=,0,0 ],1 ,1[,0 , )(1x x x x f x则 0)(≠x f ,a.e.于]1 ,1[-,且有ΛΛ≤≤≤≤)()()(21x f x f x f n ,)()(lim x f x f n n =∞→.但()+∞=-⎰-01 11d x x n ,故 ⎰-1 1 d )(x x f n 不存在;同理,⎰-11 d )(x x f 也不存在. 因此,Levi 定理不成立.容易证明:若存在)()(E L x g ∈,满足 ΛΛ≤≤≤≤≤)()()()(21x f x f x f x g n ,则Levi 定理成立(不妨一证).6.设0>mE ,又设E 上的可积函数)()(x g x f 、满足)()(x g x f <,试证⎰⎰<E E m x g m x f d )( d )( .证 ∵ 0)()(>-x f x g ,∴ 由L 积分的单调性(3L )可知0d )]()([d )(d )( ≥-=-⎰⎰⎰E E E m x f x g m x f m x g .(设法去掉等号!) 若0d )()(d )]()([ =-=-⎰⎰E E m x f x g m x f x g ,则由命题3.2.5的(ⅲ)可知0)()(=-x f x g ,a.e.于E ,与)()(x g x f <矛盾!故0d )(d )( >-⎰⎰E E m x f m x g .7.设)(x f 为E 上的可积函数,如果对任何有界可测函数)(x ϕ,都有0d )()( =⎰Em x x f ϕ,则0=f ,a.e.于E ,试证明之.证 由 )(x ϕ的任意性,不妨设⎪⎩⎪⎨⎧=∈<∈->∈=),0( ,0 ),0( ,1),0( ,1 )(f E x f E x f E x x ϕ 则)(x ϕ为E 上的有界可测函数,由题设,应有0d d )()( )0( ==⎰⎰>f E E m f m x x f ϕ.而()()()0d d d d 0 0 0 ==+=⎰⎰⎰⎰>=>f E f E f E E m f m f m f m f ,故由命题3.2.5的(ⅲ)可知:0=f ,a.e.于E .8 设)(x f 为]1 ,0[上的可积函数,若对任何)1 ,0(∈a ,恒有0d )( ),0( =⎰a m x f ,则0=f ,a.e.于]1 ,0[.证 用反证法:设在]1 ,0[上)(x f 不是几乎处处为零,令 )1 ,0(=E ,)0(1>=f E E , )0(2<=f E E ,则21 mE mE 、中至少有一个大于0.不妨设01>mE ,则存在闭集 )1 ,0(1⊂⊂E F ,满足0>mF ,从而0d )( >⎰F m x f .令}sup{ },inf{F x x F x x ∈=∈=βα,则 10<<<βα.现取)1 ,(β∈r ,并令F r G -=) ,0(,则G 为开集.由于对任何)1 ,0(∈a ,恒有0d )( ) ,0( =⎰a m x f ,于是有0d )( ) ,0( =⎰r m x f ,所以,0d )(0d )(d )(d )( ) ,0( <-=-=⎰⎰⎰⎰F F r G m x f m x f m x f m x f .(*)又设Y ∞==1) ,(i i i b a G ,其中) ,(i i b a 为互不相交的构成区间,则必存在某个G b a k k ⊂) ,(,使得0d )(),( <⎰k k b a m x f (否则必有0d )( ≥⎰Gm x f 而与(*)式矛盾!).但000d )(d )(d )() ,0( ) ,0( ) ,( =-=-=⎰⎰⎰kkkka b b a m x f m x f m x f ,为此矛盾!故 0=f ,a.e.于]1 ,0[.9.设]) ,([)(b a L x f ∈,试证:对每个N ∈n ,)]([x nf (取整函数)可积且有等式⎰⎰=∞→),( ),( 1d )( d )]([ limb a b a n n m x f m x nf.证 当n k n k x f 1)(+<≤(Z ∈k )时,1)(+<≤k x nf k ,k x nf =)]([,nkn x nf =)]([1. ∴ ][)(1nf x nn =ϕ 为简单函数列,且 )()(lim x f x n n =∞→ϕ.故 ⎰⎰⎰==∞→∞→),( ) ,( 1),( 1d )(d )]([lim d )]([limb a b a nn b a n n m x f m x nf m x nf.10.设对每个N ∈n ,)(x f n 在E 上可积,f f n →,a.e.于E ,且一致有K m x f En ≤⎰ d )(,K 为常数,则)(x f 在E 上可积.试证明之.证 设()f f E E n →=0,由f f n →于0E ,得 f f n →于0E . 由法都(Fatou )定理,得K m f m f m f En n E n n E≤≤=⎰⎰⎰∞→∞→0d limd lim d .∵ ()00=-E E m ,∴0d 0=⎰-EE m f ,于是有∞<≤=⎰⎰K m f m f E E 0d d ,即 f 在E 上可积,从而 )(x f 在E 上可积.11.设)(x f ,)(x f n (N ∈n )均是E 上的可积函数,f f n →,a.e.于E ,且⎰⎰=∞→EEn n m x f m x f d )( d )( lim.试证:在任意可测子集E e ⊂上,有 ⎰⎰=∞→een n m x f m x f d )( d )( lim .证 由法都(Fatou )定理,有 ⎰⎰⎰∞→∞→≤=en n e n n e m f m f m f d lim d lim d ①;同理有⎰⎰-∞→-≤eE n n eE m f m f d limd ;运用性质若()n n ny x +lim 存在,则()n n n n ny x y x lim lim lim+=+,(*)则有⎰⎰⎰⎰⎰---=-=eE E n neE Eem f m f m f m f m f d d lim d d d ()⎰⎰⎰⎰⎰----+=-≥eE n n eE n en neE n n En nm f m f m f m f m f d lim d d limd lim d lim⎰⎰⎰⎰=-⎪⎭⎫ ⎝⎛+=--e n n e E n n e E n n e n n m f m f m f m fd lim d lim d lim d lim ,即 ⎰⎰≥en ne mf m f d lim d . ②综合①、②,得 ≤⎰en nm f d lim⎰⎰∞→≤en n em f m f d limd .故 =⎰∞→en n m x f d )( lim=⎰en nm f d lim ⎰∞→en n m f d lim⎰=em x f d )( .附注 ②式的另一证法:假定②式不成立,即若 ⎰⎰<en ne mf m f d lim d ,则有子列k n f使⎰⎰⎰>=een ne n km f m f m f k d d lim d lim,因此,。

相关主题