当前位置:文档之家› 油气悬架四连杆导向机构的设计

油气悬架四连杆导向机构的设计


( 1800 + s 900 −1.5s
l
sin θ

l1 )
ADAMS/建模仿真分析:设计变量有 l,l1, s,θ ,图 6 为四连杆导向机构模型。
5
中国科技论文在线

优化分析结果:
Iter. OBJECTIVE_2
图 6 四连杆导向机构模型
DV_a2
长度的影响比较小,故在保证不发生动力波动的情况下可取小值,本次设计取
1225mm ,此时侧倾中心高度约为1445mm 。
4.悬架导向机构的动力学分析
悬架导向机构的动力学分析体现在车桥跳动时连杆及铰的受力情况。按照传 统的设计方法,需要先建立悬架导向机构的动力学模型,在建立数学模型进行分 析;按照现代设计方法,充分发挥计算机强大的运算能力,可以直接通过 ADAMS/View中的Measure来实现[8,9],并能产生力随车桥位移的关系曲线,如图 7 和图 8 所示分别为车辆加速度为 a = 0.5g 时铰所受力与力矩和后桥垂直位移的关
中国科技论文在线

油气悬架四连杆导向机构的设计
梁晓东
北京科技大学车辆工程系 北京(100083)
E-mail: liangxiaodong839@
摘 要:悬架导向机构是悬架系统的主要元件之一,在一定程度上决定了车辆的乘坐舒适性 和操纵稳定性。按照悬架导向机构的现代设计方法,本文对某型 45 吨矿用铰接车整体式后 轴驱动后悬架导向机构设计进行了比较深入的探讨,分析了悬架导向机构的选型,建立了悬 架导向机构的抗纵倾及侧倾模型,并进行了导向机构的运动学优化设计及动力学设计。车辆 纵倾模型分析基于 Matlab 平台,得出了纵倾三维图;车辆侧倾及动力学分析基于 Adams 平 台,建立了三维实体模型,得出了车辆在加速、制动和转向三种工况下的动力学分析曲线。 在以上优化设计参数的基础上进行了铰和连杆的结构强度设计。 关键词:悬架导向机构、优化设计、MATLAB、ADAMS、ANSYS 中文图书分类号:U461.1
x
l1 l
下臂
上臂
横向平面分析—俯视图
y
l2
z
纵向平面分析—侧视图
图 1 四连杆导向机构布置图
3 悬架导向机构的优化设计
根据悬架导向机构的设计要求,需要对导向机构的进行纵倾和侧倾的优化设 计。纵倾借助 Matlab 软件进行编程分析,目标函数为车体的俯仰角;侧倾则借 助 ADAMS 软件进行分析,目标函数为侧倾中心高度。
Wrs + ΔWr A
e r
d Fx
Wrs
+
Wh gL
ax
图 2 加速过程中作用在后驱动轴上的力分析模型
∑ 对 A 点取矩:
M
A
=
(Wh gL
ax

ΔWr
)d

Fxe
=
0
驱动力:
Fx
=
W g
ax
后悬架载荷变化: ΔWr
=
Wh gL
ax
−W g
e d
=
Krδr (悬架挠度压缩为正)
前悬架载荷变化: ΔWf
DV_l
DV_l2
DV_s
0
1202.3
6.0000
1200.0
600.00
150
1
1244.8
8.0000
1225.8
700.00
200
2
1245.0
8.0000
1300.0
700.00
200
3
1245.1
8.0000
1300.0
700.10
200
由优化结果可知,所有设计变量对后桥侧倾中心高度呈正相关变化,但连杆
(1)当车轮与车身产生相对运动时,保证轮距变化在一定的范围之内,以免 轮胎过早磨损。
1
中国科技论文在线

(2)当车轮上下跳动时,前轮定位参数要有合理的变化特性; (3)转弯时,应使车轮与车身倾斜方向相同,增加汽车的不足转向效应; (4)车辆加速和制动时能保持车身稳定,减少车身纵倾的可能性; (5)制动时,悬架导向机构的运动应使车身具有抗点头的作用;加速时有抗
俯仰的作用; (6)行程恰当的侧倾中心,保证悬架有足够的侧倾刚度; (7)各铰接点处受力尽量小,减少橡胶元件的弹性变形,以保证导向精度; (8)导向杆系有足够的强度、刚度和疲劳强度。 本文设计对象是整体式后驱动轴悬架导向机构,主要设计参数有抗前仰、抗 点头和抗侧倾。考虑到矿用车辆行驶路面条件恶劣,为保证悬架对侧向力的足够 传递能力,选用四连杆式导向机构,布置方式如下图 1 所示。
系曲线。同理,车辆制动减速度为 a = 0.5g 时及侧向加速度 a = 0.4g 时也可以得 到相应曲线,分别如图 9 ~ 12 所示。
6
中国科技论文在线

图 7 纵向加速度 a = 0.5g 时铰力与后桥垂直位移关系曲线
图 8 纵向加速度 a = 0.5g 铰力矩与后桥垂直位移关系曲线
=
Wh gL
ax
+W g
e d
= −Krδr (悬架挠度压缩为正)
Hale Waihona Puke 前悬架载荷变化: ΔWf=
Wh gL
ax
=
Kfδf
4
中国科技论文在线

车体俯仰角:θ p
= δr −δ f L
=W g
ax (−
h L
1 Kr
−h 1 L Kf
−e d
1) Kr
(2)
图 5 车减速过程车体俯仰角θ − e, d 关系曲面
图 9 纵向加速度 a = −0.5g 铰力与后桥垂直位移关系曲线 7
中国科技论文在线

图 10 纵向加速度 a = −0.5g 铰力矩与后桥垂直位移关系曲线
图 11 侧向加速度 a = 0.4g 铰力与后桥垂直位移关系曲线
图 12 侧向加速度 a = 0.4g 铰力矩与后桥垂直位移关系曲线 由图 7 ~ 12 可知,由于弹性元件的缓冲作用,铰力和铰力矩随后桥位移的变 化平缓,冲击作用得到了很大的改善。另外,从图 7 ~ 12 中还可以看出由于连杆
3.1.2 抗点头分析
取后驱动轴为自由体,如图 3 所示,建立抗后蹲悬架导向机构数学模型,如
式(2)所示。
Wrs + ΔWr
A
e r
d Fx
Wrs + ΔWr 图 4 减速过程中作用在后驱动轴上的力
∑ 对 A 点取矩:
M
A
=
(Wh gL
ax

ΔWr
)d
+
Fxe
=
0
驱动力:
Fx
=
W g
ax
后悬架载荷变化: ΔWr
参考文献
[1] 中国汽车工程学会组编,2008 世界汽车技术发展跟踪研究.北京:北京理工大学出版社,2008. [2] 刘惟信. 汽车设计. 北京: 清华大学出版社,2001 [3] 喻凡 林逸. 汽车系统动力学. 北京:机械工业出版社,2005.9 [4] 吴灵智.油气悬架系统动力学建模仿真和试验研究。浙江大学,2000 [5] 徐石安主编,汽车构造—底盘工程.北京:清华大学出版社,2008. [6] Thomas D. Gillespie 著,赵六奇和金达锋译.车辆动力学基础.北京:清华大学出版社,2006. [7] Julian Happian-smith 主编,张金柱译,现代汽车设计概论,北京:化学工业出版社,2007. [8] 石博强等编著,ADAMS 基础与工程范例教程.北京:中国铁道出版社,2007.9. [9] 李增刚编著,ADAMS 入门详解与实例.北京:国防工业出版社,2007.1. [10] 刘鸿文主编.材料力学.北京:高等教育出版社,2004,第四版
铰设计即销轴的设计,以最大挤压应力和最大剪切应力进行设计及校核[10]:
剪切应力设计: d ≥ 4 nFmax ,其中 d 为销轴直径; π [τ ]
挤压应力设计: l = Fmax ,其中 l 为销轴的挤压长度; dn[σ bs ]
连杆设计即杆材料的选取和截面积设计,材料为 45 钢,截面为矩形且长宽 比为 l = 3 ,设计准则为最大轴向应力。
后桥前虚拟旋转中心高度:
h1
=
r

l1 2
+
1800l sinθ 900 −1.5s
后桥后虚拟旋转中心高度:
h2
=
r
+
l1 2

ls sinθ 900 −1.5s
后桥侧倾中心高度(目标函数):
h
=
h2
+
0.5s 900
(h1

h2
)
=
r
+
l1 2

ls sinθ 900 −1.5s
+
0.5s 900
45吨铰接式矿用汽车采用油气悬架系统,其弹性元件和阻尼元件不能用来传 递纵向力与力矩及侧向力与侧向力矩,这部分功能由导向机构来实现。
2.悬架导向机构结构形式选择
导向机构承受传递车轮传递过来的纵向力和力矩以及侧向力。并有一定得抗 纵倾和抗侧倾能力,同时不能引起动力波动及与转向不稳定性。悬架导向机构的 设计要求[2,3,4,5]:
3.1 纵倾分析
纵倾分析需要考虑两种工况:一种是车加速过程工况,即进行抗后蹲和抗前 仰分析;另一种是车减速过程工况,即进行抗点头分析。
2
中国科技论文在线

3.1.1 抗后蹲和前仰分析
取后驱动轴为自由体,如图 2 所示,建立抗后蹲悬架导向机构数学模型,如 式(1)所示[6,7]。
h4 即: l ≥ 3nFmax 。
4[σ ]
图 14 连杆和销轴强度 ANSYS 分析 由图 14 中 ANSYS 分析可仿真分析连杆和销轴的强度。 由于悬架导向机构在绕铰接点转动的过程中,吊环沿销轴轴线方向有位移, 故在进行铰的强度设计之后还需要保证铰两端有足够的间隙:由于双向补偿作 用,据图 13 取间隙 lc = 10mm 。
相关主题