当前位置:文档之家› 烃烃源岩与盖层测井评价

烃烃源岩与盖层测井评价

通常人们把那些逸散率相对较小的岩层成为盖层 按岩性分有:泥岩、页岩、碳酸岩盐、盐岩、膏岩盖层
按作用与展布情况:区域盖层、局部盖层和隔层
按储盖邻接关系:上覆盖层与直接盖层 泥岩作为盖层,其封闭机理有三个:
(1)毛细管力封闭:毛细管具有较高的驱替压力和阻止烃类扩散; (2)压力封闭:由于具有异常压力而阻止烃类逸散; (3)浓度封闭:由于盖层具有较高的烃类,从而阻止储集层烃类扩散。
(二)、测井响应及应用 1.自然伽马测井 富含有机质的生油气岩常伴随有高放射性元素,生油 气岩常有较高的自然伽测井值,经常用异常高的自 然伽马测井值来确定生油岩(Beer,1945;Swanson, 1966)。
油田范围内自然伽马与有机质含量 的相互关系表明较高的放射性层常常与 有机质存在相关性。由于铀和有机质之 间 经 验 观 测 有 很 好 的 关 系 (Swanson , 1960) 。可用自然伽马能谱测井来有效 地确定有机质丰度 (Supemaw 等, 1978 ; Fert和Rieke,1980)。
第四章 烃源岩与盖层的测井研究
烃源岩的测井分析与评价
一、烃源岩的地质特征与测井响应
(一)、地质特征 烃源岩主要是在低能环境下沉积的粘土和碳酸盐淤泥。 亨特(J.MHnt,1979)将烃源岩限定为“曾经产生并排出足以形成 工业性油气聚集之烃类的细粒沉积”。 蒂索(B.P.Tissont,1978)则将“可能产生或已经产生石油的岩石 叫做烃源岩”。 在进行烃源岩研究时,所涉及的对象往往是,既有成熟的烃源岩, 也有末成熟的烃源岩。按亨特的定义,将未成熟的烃源岩定义为 “潜在烃源岩”,将成熟并产生排烃的烃源岩定义为“有效烃源 岩”。 石油伴生气的生气岩,也可理解为包括在烃源岩之内的一种情况, 因为它们之间有着内在的成因联系。 至于“煤型气”的源岩,则是煤系地层的特征。
二、泥质岩盖层测井评价参数
1.厚度 自然电位、自然伽马、自然伽马能谱。 2.含砂量 含砂量大,可塑性降低,脆性增大,易 产生裂缝,尤其针对深层裂缝 3.总孔隙度 可动流体与被粘土矿物束缚部分的流体 总和-反映压实程度 30%。 计算岩石突破压力 4.有效孔隙度 评价盖层质量的重要参数 新地层--总孔隙度 老地层--有效孔隙度 5.泥岩裂缝 6.渗透率-孔隙度、含砂量、束缚水 7.粘土矿物分析
三、烃源岩的测井评价参数
(一)、生油岩剩余烃含量VHC 剩余烃含量VHC,是指残留于油气源岩孔隙中的油气含量。 VHC的大小,与生油气岩有机质的类型、丰度、成熟度和产烃率有关。 VHC反映生油气岩是否已经生成油气和生油气量大小的一个参数,是区分有 效生油气岩、无效生油气岩及非生油气岩的标志。 VHC=φt· Sog φt是单位岩石体积的百分数;VHC的单位则是单位生油气岩体积的百分数。
碳酸盐岩基质孔隙度一般都很低。基质孔隙度反映碳酸盐岩做盖层是完全可以的, 但是碳酸盐岩大多存在后生成岩改造,使之产生次生孔洞、溶洞、裂缝等。 这些次生孔隙的出现,使碳酸盐岩由盖层转变为储层,失去封闭油气的能力。 成岩后生改造作用经常是不均一的,它将大面积展布的碳酸盐岩分割成鸡窝 状。局部看,可能是优质封盖层,整体看,它可能是破碎的封盖层。
表 4-5 泥岩、膏岩、煤岩的测井响应对比表
岩性 盐岩 硬石膏 石膏 煤岩 声波时差 220 164 171 350~450 体积密度 201 3.0 2.3 1.3~1.5 中子孔隙度 ≈0 ≈0 50% 70% 中子伽马 高值 高值 低值 低值 自然伽马 最低值 最低值 最低值 低值 自然电位 基值 基值 基值 不明显 微电极 极低值 电阻率 高值 高值 高值 高值 井径 扩径 接近钻头直径 接近钻头直径 接近钻头直径
3.声波一电阻率曲线组合
Passey(1989)研究了一项可以使用于碳酸 盐岩和碎屑岩生油岩的技术,预测不 同成熟度条件下的TOC,这一方法为 声波测井和电阻率曲线重叠法。 传播时间曲线和电阻率曲线刻度为每两个 对数电阻率刻度对应的声波时差为 — 100μs / ft(—328μs / m) 。把非生油岩 的曲线叠加在一起作为基线,当两条 曲线在一定深度范围内“一致”或完 全重叠时为基线。确定基线之后,用 两条曲线间的间距来识别富含有机质 的层段。两条曲线间的距离为 ΔlgR , 每一个深度增量测一次。 两条重叠曲线中部的数据为 R 基线 和 Δt 基线 值。
碳酸盐岩的封盖性能,用单一一项技术判断是困难的,实验室分析、测井分析、 精细地质解释三者紧密结合,是判断碳酸盐岩封盖层封闭性能的唯一途径。
(三)、煤岩盖层 煤岩自身孔隙度很低,又具有可缩性,在构造运动不太活跃的地区, 煤岩常可作为油气的封盖层。 埋藏较浅、构造运动活跃的地区,煤岩也可出现构造裂缝,使煤层 失去封闭刚气的能力。 煤岩测井响应值很明显,用测井资料很容易判别煤层。用测井资料 识别煤层,并综合分析煤层是否存在次生裂缝,达到评价煤层封 盖性能的目的。
(五)、生油气岩总有机碳TOC
产烃率HCI是每克生油气岩中总有机碳 TOC转化成熟后产生的烃, TOC: TOC=HCI/matu 单位为每克生油岩中有机碳质量。 根据有机碳质量可进一步计算每吨岩石中有机质的质量,用于评价 生油气岩有机质丰度。
四、应用实例
盖层测井分析与评价
一、盖层概述
盖层(是一个相对概念)作用是防止油气逸散。
式中:ρb、ρm、ρk、-分别为岩石、骨架、干酪根的密度值。
4.电阻率测井 成熟生油岩中电阻率急剧增加,可能 与不导电的烃类有关。 5.声波测井 烃源岩比非烃源岩具更多的有机质, 声波时差较高。采用体积平均法 ( Wgllie 转换),经统计分析,得 出应用声波测井评价 TOC 的函数为:
应用各种测井相应特征,评价烃源岩 得 TOC 时,应注意影响因素,有针 对性地进行。
四、其它岩性盖层的测井 分析
含砂量 % 权值 1 0 -1 / m >10
表 4-2 测井参数识别盖层权值表 盖层厚度 权值 2 1 0 / % <20 20~30 >30 / 总孔隙度 权值 2 1 0 / % 1~2 2~3 3~4 4~6 有效孔隙度 权值 3 2 1 0
1.盐岩、膏岩盖层 2.碳酸盐岩盖层 3.煤岩盖层
根据自然伽马及其能谱中的铀含量,评价烃源岩的TOC。应用自然
伽马测井评价有机质的经验公式为: I有机质=α(GR烃源岩-GR普通泥岩)(α-地区经验系数)
3.密度测井 固体有机质的密度比周围的岩石骨架低,可用密度测井来估算 有机质含量 (Schnlolter , 1979) 。经统计分析,可作出密度 TOC关干酪根系图。
(三)、生油气岩产烃率HCI
生油气岩产烃率: HCI=VHC· DHYC/DMT 式中:DHYC——生油气岩中剩余烃的含量; DMT——生油气岩的岩石密度 HCI的单位是g/g,既每克生油气岩生成烃的质量——产烃率。
(四)、生油气岩的成熟度matu
碳是干酪根的主要元素成分,通过对地下干酪根所含碳元素变迁过程的研 究,可以获得干酪根向石油烃演化程度的信息。 剩碳率a值是一个衡量干酪根向石油烃转化程度的参数。它是指尚未转移 到油气和氯仿沥青中的干酪根对全部有潜力碳的比例。 关于剩余碳a值,可根据时间、温度关系等进行计算. 当取得剩碳率值后,便可根据下式计算其成熟度: matu=1一a
可塑性和膨胀性 蒙脱石>伊/蒙混层>高岭石>伊利石>绿泥石
泥页岩盖层成果参数显示
VHC-剩余烃含量 PODG-(ФN- ФD) POAG (ФN –ФS)
盖层或烃源岩
Pa-突破压力 Pr-排驱压力 AC DEN CNL Rt Rxo
三、有效盖层的识别与评 价
1.有效盖层的识别
能够直接封闭油气的直接盖层 2.泥质岩盖层等级划分
横坐标:标准温度下电阻率(R75oF、R24oC),对数刻度,单位:Ω.m 纵坐标:密度,采用时数刻度,单位:g/cm3 RT=R75×82/(T+7) R75=RT×(T+7)/82 T-有关深度的地层温度(oF)
2. 声波时差-电阻率交会图
横坐标:标准温度下电阻率R75oF,对数刻度,单位:Ω.m 纵坐标:声波时差,采用对数刻度,单位:s/m
0~20 20~40 >40 /
5~10 <5 /
表 4-3 盖层等级划分表 盖层等级 盖层权级 盖层性质 优质 8,7,6 气藏盖层 好 5 良 4 油藏盖层 差 3 差 2,1 假盖层 差 0,-1
四、其它岩性盖层测井分析
(一)、盐岩、膏岩盖层 盐岩、膏岩是在高蒸发环境下的产物,在地下常以晶体结构存在,结构紧密,渗 透性极差,是优良的封盖层基质。 盐岩和膏岩由于其特殊的物质结构,测井值常趋于某一特定值,成为测井资料判 别盐岩和膏岩的基本标准。 用测井资料判别膏岩、盐岩层,然后用测井资料来标定地震资料,预测膏岩、盐 岩层的空间展布,可有效地分析膏岩、盐岩的封闭作用。 (二)、碳酸盐岩盖层
LOGES系统的烃源岩测井解释方法
1.烃源岩的概念模型 2.生油岩含油气饱和度 式中:Swt——生油气岩含水饱和度; Rwc——生油气岩中水电阻率; φt——生油气岩总孔隙度; Rt——生油气岩电阻率。 系数a、b和指数m、n可通过岩电实验取得。新区 采用经验值a=0.62, b=1,n=2,m=2.15 Sog=1一Swt 3.生油气岩总孔隙度和有效孔隙度
(2)含干酪根页岩段,电阻率随着孔隙度略有变化;
(3)含干酪根、油和气的页岩段,电阻率随孔隙度增加。
(三)、声波时差-自然伽马组合
不含有机质泥岩基线之上所表示的层段是富含有机质的页岩。 在GR—Δt图上每一个富含有机质层段可由两个差异值表征: (1)放射性 d(GR)=GRlog—GR1 (2)时差 d(Δt)=Δtlog—Δt1 这两个值中的每一个值都与页岩段的总有机质含量 (干酪根、油、气) 成比例,它们的乘积IX是: IX=(GRlog—GRl)×(Δtlog—Δt1) Ix是总有机质含量的相对量度。 相同深度的岩屑或岩心得到的干酪根、油和气的测量数据相加得到 TOC利用有机质的重量来刻度Ix是可能的。 伽马放射性对固体有机质(干酪根)确实相当敏感, 时差却对气或油相当敏感。 具有低d(GR)和高d(Δt)的层段应含有一些气。 具有高d(GR)和低d(Δt)的层段会含有较多的固体有机质。 中间值应归于油和干酪根的混合地段。
相关主题