测井地质学思考题1、地层倾角测井判断古水流方向倾角测井能够反映沉积构造信息、准确计算层理倾向、倾角。
因此,对于地下地质研究,利用倾角资料分析古水流是最重要的方法。
有两种方式确定古水流:(1)利用倾角测井微细处理成果图,统计目的段内所有纹层倾向,取其主要方向代表古水流。
这种方法使用大范围内古水流砂体内部前积结构,取其主要方向代表古水流(2)统计目的层段内所有蓝模式矢量的方向,取其主要方向代表古水流。
这种方法适用于大范围内古水流系统研究。
将区内由地层倾角测井资料(经过沉积学特殊处理)判断的古水流方向(主次)标注在平面位置上。
选井应全区均匀分布,可以控制各个相带的古水流系统方向。
每口井在选取方向时,一定要是目的层段砂体的精细处理矢量图的蓝模式方向,或者用沉积施密特图的主峰方向控制每口井的局部古水流方向。
3、测井构造分析:地层产状获取方法。
现代地层倾角测井和井壁成像测井技术能准确确定地层产状和构造要素(包括褶皱、断层和不整合面等)。
岩层最初形成时,大都是水平的或近于水平的。
如果发生构造运动,如褶皱运动,水平成层的岩层形成褶曲形态,各岩层的褶曲是按同一轴面套叠的,以后再沉积,新的沉积岩层在新的褶曲运动下又形成了新的褶曲,又按新的轴面套叠。
(1)通过倾角测井获取地层产状。
倾角测井每个矢量代表该深度点的地层在井眼面积范围内测到的产状。
井内不同深度点的矢量,从套叠关系分析,相当于构造不同部位的矢量。
将各部位的矢量通过套叠关系都集中到一个岩层构造面上,就能将岩层的构造形态恢复出来。
地层倾角测井研究构造与沉积时,在矢量图上可以把地层倾角的矢量与深度的关系大致分为四类:红色、蓝色、绿色和白色模式。
在组合矢量模式中,对于每一种构造的不同形态都唯一地对应了一种组合矢量模式,但是反过来则不成立,即同一个矢量模式具有多解性,但是我们可以结合其它资料排除那些不正确的解。
在井中经常钻遇多个构造,它们的组合模式将是各单个构造组合矢量模式的再组合。
(2)通过井壁成像技术获取地层产状。
井壁成像测井资料主要是井壁的数字成像图,用色彩及辉度来表现构造现象。
由于裂缝和层面处岩性的突变,造成了岩石的电导性或岩石的密度有突然的变化,在成像测井的图像上就会表现为一条明显的暗色条带,追踪这个条带的变化趋势,可以计算出断层的产状及褶皱的要素。
4、裂缝的测井响应分析及其主要特征。
P179-1865、裂缝型储层中裂缝的定量产状及储层参数识别方法。
P186-1926、如何通过测井资料分析现今地应力场的方向。
P1987、烃源岩的测井响应及其识别方法。
由于烃源岩含有固体有机质,这些有机质里富含有机碳,而有机碳具有密度低吸附性强的特征。
因此,烃源岩在许多测井曲线上具有异常反应。
正常情况下,含碳越高的烃源岩,其测井曲线上的异常程度就越大。
通过测定异常值的高低,就能反算出含碳量的大小。
对烃源岩有异常反应的测井曲线主要有:(1)自然伽马曲线:在该曲线上表现为高异常,这是因为富含碳的烃源岩往往吸附有较多的放射性元素铀。
(2)密度和声波时差曲线:富含碳的源岩层,其密度低于其它岩层,因而在密度曲线上表现为低异常,在声波时差曲线上表现为低(高时差)异常。
(3)电阻率曲线:成熟的岩层由于含有不易导电的液态烃类,因而在该曲线上表现为高异常,利用这一特征可识别烃源岩成熟与否。
(4)自然伽马能谱测井:烃源岩一般富含放射性元素,主要是吸附特殊元素(如U)高异常。
………………P204-2108、ΔLgR求TOC的方法(图、公式和流程)。
声波和电阻率曲线重叠法是Passey于1989年研究的一种适用于碳酸盐岩和碎屑岩生油岩的TOC预测技术,该技术能够精确预测不同成熟条件下的TOC。
在应用时,时差曲线和电阻率曲线刻度为每两个对数电阻率刻度对应的声波时差为-100μs/ft,把非生油岩曲线叠在一起作为基线,当两条曲线在一定深度范围内一致或完全重叠时为基线。
确定基线以后,用两条曲线的距离来识别富含有机质的层。
两条曲线的距离为ΔLgR,每一个深度增量测一次。
ΔlgR与TOC线性相关,并且是成熟度的函数。
如果可以确定成熟度(单位为LOM;Hood,1975),那么利用ΔlgR—TOC关系图可以把ΔlgR直接换算成TOC。
成熟度LOM可以从大量的样品分析中得到(如热变指数Ro),或从埋藏史和热史的评价中得到。
如果成熟度LOM估算不对,那么TOC绝对值将有误差,但仍能正确反映TOC的垂向变化。
根据声波-电阻率叠加计算的ΔlgR代数方程是:ΔlgR=lg(R/R基线)十0.02(Δt—Δt基线)式中ΔlgR—实测曲线间距在对数电阻率坐标上的读数;R—测井仪实测的电阻率,Ω.m;Δt—是实测的传播时间,μs/ft;R基线—非生油的粘土岩中基线对应于基线值的电阻率;0.02—依赖于每一个电阻率刻度的-50μs/ft比值。
通常,Δt基线值在整个井中都一样,仅R基线值变化,来使曲线叠合。
对TOC剖面图(Passey等)所示的井段,用Δt基线=100μs/ft和R=1.0Ω.m相应的来画图。
从ΔlgR 计算TOC的经验方程为:TOC=ΔlgR×10(2.279—0.1688LOM)式中TOC—计算的总有机碳质量含量%;LOM—成熟度;LOM=7:对应于生油干酪根成熟作用的开始;LOM=12:对应于生油干酪根过成熟作用的开始。
9、比较说明地层倾角测井在构造解释和沉积解释上的差异。
通常地层倾角测井经过长相关对比处理得到小比例尺(1:200)的倾角成果图用于地层构造学解释,包括产状、褶皱、断层压实后的砂体形态、裂缝识别等。
地层倾角资料垂向采样率高, 能够识别厘米级的地层信息, 同时, 数字处理的成果图件形式多样、内容丰富, 使其在解释地层方面有广泛的应用。
既可解释地层层理构造, 地层接触关系, 也可识别断层和不整合等构造变化。
而应用于沉积学中必须作特殊的处理,即短相关对比(使用较大的比例尺,一般为1:500)或精细模式识别的交互处理,甚至使用最先进的成像手段,并始终贯彻“岩心刻度测井”的指导思想,在工作中通过岩心观察和沉积构造描述,总结测井相和沉积相之间的对应关系,沉积研究主要得到沉积结构、构造、古水流方向等信息。
高分辨率地层倾角测井能够提供精细的沉积构造信息, 用地层倾角研究岩层的层理构造, 从而了解沉积搬运方向和估计沉积环境, 分析古沉积环境, 产层的分布特征。
1.倾角测井数据成果显示方式:列表;倾角矢量图;方位频率图;杆状图;圆柱面坐标图;2.倾角矢量的模式:红色模式:倾向大体一致,倾角随深度的增加而逐渐增大的一组矢量;绿色模式:倾向大体一致,倾角不随深度变化的一组矢量。
蓝色模式:倾向大体一致,倾角随深度增加逐渐减小的一组矢量。
白色模式:倾向和倾角都杂乱变化的一组矢量或点子少,可信度差。
3.有断裂破碎带的断层矢量图上显示为绿—乱—绿模式。
旋转断层矢量图上显示为绿—绿模式。
断裂面没有变形的断层(均为绿色模式)4.成像测井井下仪器是以扫描方式或阵列方式来测量岩石的某个物理量(电阻率、声阻抗等)在柱状坐标系(r,θ,z)中的分布,输出的是该物理量的沿井壁或井周的分布图。
5微电阻率扫描成像测井的主要优点:能提供井壁附近地层的电阻率随深度变化的图像;图像外观类似于岩心剖面,可用于识别裂缝,分析薄层,进行储层评价以及沉积相和沉积构造方面的研究,在探测复杂岩性、裂缝性油气藏方面具有独特的优势。
6电成像测量结果的影响因素:1)电极的大小及形状:电极越小,分辨率越高,图像越清晰;电极越小,流入其电流越小,仪器灵敏度越高;电极越小,泥饼对电极的影响越大;电极周围绝缘环带越宽,噪声越低,信噪比越高。
2)极板与井壁之间的间隙:该间隙越大,仪器的垂向分辨率越小,对地层的灵敏度越小。
3)侵入的影响:侵入的影响类似于对浅侧向电阻率测井的影响。
7.电成像的地质应用:1)图像解释遵循的基本原则:图像上的颜色仅仅反映的是电阻率的大小,不表示地层的实际颜色。
图像上颜色越深,电阻率越小,反之,颜色越浅,电阻率越大。
裂缝识别及评价;地质应用:地质构造解释;地层沉积相和沉积环境解释;储层评价;帮助岩心定位和描述;高分辨率薄层分析与评价;确定井眼几何形状,推算地应力方向;确定井层位置和射孔位置。
8. 1)静态归一化:即在较大的深度段内(相应于某层段或某一储集层段),对仪器的响应进行归一化,即在一个深度处特定色彩表示的电阻率,而另一深度处如果色彩相同,即表示该深度处具有同样的电阻率。
优点:在较长的井段内通过灰度和颜色的比较来对比电阻率。
缺点:不能分辨小范围内微电阻率的变化。
2)动态归一化:即在较短的井段内,选择灰度的深浅和色彩的浓淡来表征电流强度的级别。
优点:能反映局部范围微电阻率的变化,更精细地研究井壁岩石结构、裂缝等变化9. 声成像测井原理:也称为超声波成像测井,仪器记录声波传播时间和反射波幅度(能量)。
超声电视成像测井采用旋转式超声换能器,对井眼四周进行扫描,并记录回波波形。
岩石声阻抗的变化会引起回波幅度的变化,井径的变化会引起回波传播时间的变化。
将测量的反射波幅度和传播时间按井眼内3600方位显示成图像,就可对整个井壁进行高分辨率成像,由此可看出井下岩性及几何界面的变化(包括冲蚀带、裂缝和孔洞等)。
10 声成像测井的影响因素:换能器的尺寸和工作频率:直径相同的换能器,发射频率越高,仪器的聚焦能力越强,分辨率越高。
但是,随着超声频率的增高,声波的衰减幅度增大,造成超声探测距离减小。
仪器偏心的影响:当测井仪器在圆形井眼中处于偏心状态时,换能器向井周每一个点发射的声波不能垂直入射,入射声束与反射声束存在夹角,接受器不能接受到全部的反射波,造成回波能量的损失,而且,仪器与井周每一点的距离也不等,距离的差异,也可以造成回波能量损失的差异。
井内介质:井内介质密度越大,声波衰减越大,探测灵敏度下降(测量的距离(椭圆形井眼);目的层的表面结构;目的层的倾角;岩石的波阻抗差异)。
11.声成像的地质应用:1)图像解释的原则:在图像上,颜色不代表地层的实际颜色,浅颜色代表声波传播时间短,接收信号的能量(幅度)高;反之,深颜色代表声波传播时间长,接收信号的能量(幅度)低;主要应用:360度高分辨率井径测量,可分析井眼的几何形状,推算地应力的方向;探测裂缝和评价井眼垮塌;确定地层厚度和倾角;进行地层形态和沉积构造分析;检查套管腐蚀和变形情况;进行水泥胶结质量评价。
12.按成因和岩性把储集层划分为三类:碎屑岩储集层;碳酸盐岩储集层;其他岩类储集层。
13.岩性确定:岩性-密度测井法;岩性-孔隙度交会图法;中子-密度交会图;M-N交会图法孔隙度的确定:岩石体积物理模型法;岩石体积物理模型法;双孔隙度交会图法;地区经验公式法;饱和度确定:Archie公式;Rt~φ交会图法;束缚水饱和度的确定:可使用孔隙度、泥质含量和润湿性来建立束缚水饱和度经验关系渗透率的确定:经验模型法;多元回归法;神经网络、灰色系统等技术;泥质含量的确定:泥质含量的相对值确定法;泥质含量的经验公式确定法,地层水电阻率Rw的确定:根据水样资料确定Rw ;利用;SP测井确定Rw;电阻率一孔隙度组合确定Rw;解释人员根据经验直接给出。