高中物理牛顿运动定律的应用试题类型及其解题技巧一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为:v1=112a L=5 m/s<6 m/s即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′则v″=v1-a1t′L2+x′=v1t′-12a1t′2x′=12a2t′2联立以上各式代入数据解得:t′1=12s,t′2=2 s(t′2>t,不合题意,舍去)将t′=12s代入v″=v-a1t′得:v″=3.5 m/s.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送带逆时针转动,运行速度v=1.0m/s。
已知木板与物块间动摩擦因数μ1=32,木板与传送带间的动摩擦因数μ2=3,取g=10m/s2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m;(3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。
【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
4.如图所示,质量M =8kg 的小车放在光滑水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t =1.5s 小物块通过的位移大小为多少?(取g =10m/s 2).【答案】(1)2m/s 2,0.5m/s 2(2)1s ,2m/s (3)2.1m 【解析】 【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可. 【详解】(1) 根据牛顿第二定律可得 小物块的加速度:m/s 2小车的加速度:m/s 2(2)令两则的速度相等所用时间为t ,则有:解得达到共同速度的时间:t =1s 共同速度为:m/s(3) 在开始1s 内小物块的位移m此时其速度:m/s在接下来的0.5s 小物块与小车相对静止,一起做加速运动且加速度:m/s 2这0.5s 内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.5.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t=后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离; (2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.6.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C 、D 两端相距4.45m , B 、C 相距很近。
水平部分AB 以5m/s 的速率顺时针转动。
将质量为10 kg 的一袋大米轻放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(已知sin37º=0.6,cos37º=0.8, g 取10 m/s 2 ,6=2.450,7.2=2.68)(1)若CD 部分传送带不运转,求米袋沿倾斜传送带所能上升的最大距离.(2)若要米袋能被送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D端所用时间的取值范围.【答案】(1)能滑上的最大距离 1.25m s= (2)要把米袋送到D 点,CD 部分的速度4m/s CD ≥v 时间t 的范围为1.16s 2.1s t ≤≤【解析】 【分析】(1)由牛顿第二定律可求得米的加速度,因米袋的最大速度只能为5m/s ,则应判断米袋到达B 点时是否已达最大速度,若没达到,则由位移与速度的关系可求得B 点速度,若达到,则以5m/s 的速度冲上CD ;在CD 面上由牛顿第二定律可求得米袋的加速度,则由位移和速度的关系可求得上升的最大距离;(2)米袋在CD 上应做减速运动,若CD 的速度较小,则米袋的先减速到速度等于CD 的速度,然后可能减小到零,此为最长时间;而若传送带的速度较大,则米袋应一直减速,则可求得最短时间; 【详解】(1)米袋在AB 上加速时的加速度a 0=mgmμ=μg =5m /s 2米袋的速度达到v 0=5m/s 时,滑行的距离s 0=202v a=2.5m <AB=3m ,因此米袋在到达B 点之前就有了与传送带相同的速度;设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得mg sinθ+μmgcosθ=ma 代入数据得 a=10 m/s 2所以能滑上的最大距离 s =202v a=1.25m(2)设CD 部分运转速度为v 1时米袋恰能到达D 点(即米袋到达D 点时速度恰好为零),则米袋速度减为v 1之前的加速度为a 1=-g (sinθ+μcosθ)=-10 m/s 2 米袋速度小于v 1至减为零前的加速度为a 2=-g (sinθ-μcosθ)=-2 m/s 2由222101120 4.4522v v v m a a --+= 解得 v 1=4m/s ,即要把米袋送到D 点,CD 部分的速度v CD ≥v 1=4m/s 米袋恰能运到D 点所用时间最长为101120 2.1max v v v t s a a --+== 若CD 部分传送带的速度较大,使米袋沿CD 上滑时所受摩擦力一直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为a 2. 由S CD =v 0t min +12a 2t 2min ,得:t min =1.16s 所以,所求的时间t 的范围为 1.16 s≤t≤2.1 s ; 【点睛】题难点在于通过分析题意找出临条界件,注意米袋在CD 段所可能做的运动情况,从而分析得出题目中的临界值为到达D 点时速度恰好为零.7.如图所示,质量m=1kg 的物块,在沿斜面向上,大小F=15N 的拉力作用下,沿倾角θ=37°的足够长斜面由静止开始匀加速上滑,经时间t 1=2s 撤去拉力,已知物块与斜面间的动摩擦因数μ=0.5,取210/g m s =,sin37°=0.6,cos37°=0.8,求:(1)拉力F 作用的时间t 1内,物块沿斜面上滑的距离x 1; (2)从撤去拉力起,物块沿斜面滑到最高点的时间t 2; (3)从撤去拉力起,经时间t=3s 物块到出发点的距离x . 【答案】(1)110m x = (2)21t s = (3)11m x = 【解析】 【分析】 【详解】(1)物块在时间1t 内沿斜面匀加速上滑,设加速度大小为1a , 由牛顿第二定律有1sin 37cos37F mg mg ma μ--︒= 解得215/a m s =在这段时间内物块上滑的距离为21111102x a t m == (2)经时间1t 物块的速度大小为11210/v a t m s == 接着物块沿斜面匀速上滑,设加速度大小为2a , 由牛顿第二定律有:2sin 37cos37mg mg ma μ+︒=解得2210/a m s =根据速度公式有:1220v a t =- 解得21t s =(3)物块在时间t 2内上滑的距离为221222152x v t a t m =-=, 沿斜面下滑时间为322t t t s =-= 设物块沿斜面下滑的加速度大小为3a ,由牛顿第二定律有:3sin 37cos37mg mg ma μ-︒=解得232/a m s =物块在时间t 3内沿斜面下滑的距离为2333142x a t m ==, 故12311x x x x m =+-=【点睛】过程稍多,中间摩擦力方向有变化,要分过程仔细分析,不能盲目套用匀变速直线运动的规律.8.如图甲所示,长木板A 静止在水平地面上,其右端叠放着物块B ,左端恰好在O 点,水平面以O 点为界,左侧光滑、右侧粗糙。