1.1. 原子核、核子及相关术语质子proton中子neutron电子electron核子nucleon核nucleus (pl.)nuclei 原子atom光子photon正电子positron量子quantum, quanta (pl.) 电子伏特electron-volt (eV) 兆电子伏特mega electron-volt (MeV) 同位素isotope原子序数atomic number质量数mass number超铀元素transuranium element元素周期表periodic table热中子thermal neutron快中子fast neutron复合核compound nucleus1.2. 相关元素与材料1.2.1.核燃料与增殖材料铀uranium(U)钚plutonium(Pu)氘,重氢deuterium,heavy hydrogen氚tritium混合氧化物燃料(MOX燃料)Mixed (Uranium and Plutonium) OXide fuel二氧化铀uranium dioxide浓缩铀enriched uranium贫铀depleted uranium 碳化铀uranium carbide钍thorium锂lithium锕系元素actinide element易裂变的fissile可裂变的、可裂变物质fissionable 增殖同位素fertile isotope核嬗变nuclear transmutation转化conversion1.2.2.其它核材料及核电厂用材料慢化剂moderator轻水light water重水heavy water石墨graphite冷却剂coolant氦helium液态金属liquid metal钠sodium包壳cladding铝aluminium镁magnesium锆zirconium锆2/4合金zircaloy-2/4不锈钢stainless steel控制材料control material通量展平flux-shaping银silver铟indium镉cadmium可燃毒物burnable poison硼boron硼酸boric acid锂lithium铍beryllium乏燃料spent fuel因科镍,因康INCONEL不锈钢stainless steel 1.3. 核反应及相关术语decay衰变fission裂变fusion聚变nuclear reaction核反应chain reaction链式反应cross section截面microscopic cross section微观截面macroscopic cross section宏观截面absorbing cross section吸收截面scattering cross section散射截面barn靶恩delayed neutron缓发中子prompt neutron瞬发中子prompt criticality瞬发临界fissile易裂变的fissionab可裂变的lemorderate / slow down慢化breeding ratio增殖比burnup燃耗reactivity反应性neutron cycle中子循环fission product裂变产物criticality临界prompt critical瞬发临界flux通量xenon氙iodine碘actinide锕系(元素)reactivity worth反应性价值慢化剂温度系数 moderator temperature coefficient反应性系数 reactivity coefficient剩余反应性 excess reactivity燃料比功率 fuel specific power倍增因子multiplication factor有效增殖系数effective multiplication factor;effective multiplication constant无限介质增殖系数infinite multiplication factor;infinite multiplication constant快中子增殖系数fast fission factor热中子利用系数thermal utilization factor不泄漏几率nonleakage probability逃脱共振俘获几率resonance escape probability四因子公式four-factor formula多普勒增宽Doppler broadening*总集成中子通量/总积分中子通量Total Integrated Neutron Flux = Integrated Flux or Fluence (注量) = Neutron density ⨯ Velocity ⨯Time [单位:n/m3⋅ m/s ⋅ s = n/m2]1.4. 反应堆压水堆Pressurized Water Reactor (PWR)沸水堆Boiling Water Reactor (BWR)加拿大重水铀反应堆(坎杜堆)CANadian Deuterium and Uranium reactor (CANDU) / pressurized heavy water reactor (PHWR)英国气冷堆(美诺克斯堆)British gas-cooled Magnox reactor高温气冷堆high temperature gas-cooled reactor (HTGR)快中子增殖反应堆fast breeder reactor (FBR)轻水堆Light Water Reactor (LWR)先进反应堆advanced reactor超临界水反应堆supercritical water reactor欧洲压水堆(第三代反应堆之一)European Pressurized water Reactor (EPR) (美国)先进压水堆600/1000(第三代(+)反应堆之一)AP(WR)600 / 10001.5. 核电厂部件、设备与系统燃料芯块fuel pellet燃料元件fuel element燃料棒fuel rod燃料组件fuel assembly定位格架spacer grid法兰flange密封环seal ring阻力塞plug(上/下)腔室(upper / lower ) plenum堆芯,活性区core反应堆压力容器Reactor Pressure V essel (RPV)上封头upper closure head液压螺栓拉伸机(张紧机) hydraulic stud tensioner包覆层clad (碳钢表面的防腐蚀堆焊层) 控制棒control rod控制棒组件Control Element Assembly (CEA)可燃吸收棒burnable absorber rod控制棒驱动机构Control Element Drive Mechanism (CEDM)变送器transmitter信号调理signal regulation吊篮barrel进/出口接管inlet / outlet nozzle冷/热端,冷/热腿,冷/热管段cold / hot leg 反应堆堆内构件reactor vessel internals肿胀swelling腐蚀corrode, corrosion 侵蚀erode, erosion氧化oxidation, oxidize完整性integrity反应堆冷却剂泵(主泵)Reactor Coolant Pump (RCP)屏蔽泵canned (motor) pump轴封泵shaft seal pump反应堆冷却剂系统(一回路系统)Reactor Coolant System (RCS)核蒸汽供应系统Nuclear Steam Supply System (NSSS)一回路primary loop/circuit一回路系统/主回路系统primary system二回路secondary loop稳压器pressurizer (PRZ)波动管surge line汽水分离器moisture separator干燥器(二/三级汽水分离器)steam dryer 安全阀safety valve卸压阀relief valve溢流阀overflow valve主蒸汽隔离阀main steam isolation valve单向阀check valve止回阀non-return valve主蒸汽联箱main steam header给水调节阀feed regulating valve蒸汽发生器Steam Generator (SG)主蒸汽管Main Steam Line (MSL)汽轮机steam turbine汽水分离再热器Moisture Separator Reheater (MSR)给水泵feed (water) pump上充泵charging pump凝汽器condenser发电机(electric) generator安全壳containment地基,基础foundation烟道stack贯穿件penetration核岛nuclear island常规岛conventional island核电厂配套子项Balance of Plant (BOP)一回路辅助系统auxiliary system for primary loop化学与容积控制系统(化容系统)Chemical and V olume Control System (CVCS)专设安全设施Engineered Safety Feature (ESF)余热排出系统Residual Heat-Removal System (RHRS)应急堆芯冷却系统Emergency Core Cooling System (ECCS),安注系统Safety Injection (SI) System直接注射系统direct vessel injection (DVI) 换料水箱Refueling Water Storage Tank (IRWST) (乏)燃料贮存水池(spent) fuel storage pool 燃料装卸系统fuel handling system蓄压箱accumulator机组unit辅助喷淋auxiliary spray柴油发电机Diesel generator自动保护系统Automatic Protective System (APS)自动降压系统automatic depressurization system (ADS)仪控系统Instrumentation and Control System (I & C system)开关设备,开关柜switch gear蒸汽轴封系统,压盖蒸汽密封系统gland steam system汽轮机旁路管turbine bypass line辅助给水泵auxiliary feedwater pump汽动给水泵turbine driven feedwater pump 导管conduit冷凝水泵condensate pump冷凝水增压泵condensate booster pump水润滑轴承water lubricated bearing人孔man way检修孔accessory port1.6. 反应堆运行运行operation运行工况operating condition操纵员operator维护maintenance监督、监视surveillance监督试样surveillance specimen辐照监督管irradiation surveillance capsule 辐照监督试样盒surveillance specimen compartment 硼浓度boron concentration稀释dilution / dilute硼注入 boron injection停堆shutdown紧急停堆scram / trip停役outage换料停堆refueling outage / refueling shutdown换料refuel卸料 discharge倒料 shuffling满功率运行full power operation负荷跟踪load following甩负荷load shedding, load rejection(控制棒等的)插入insertion(控制棒等的)抽出withdrawal反应堆调节系统Reactor Regulating System (RRS)(蒸汽发生器)排污、下泄blowdown规程procedure技术规格technical specification瞬态,瞬变transient安装调试installation and commissioning 冷态试验 cold functional test热态试验 hot functional test(反应堆)启动试验(reactor) start up test退役decommissioning主控室main control room方位角偏差azimuthal tilt径向功率分布radial power distribution轴向功率分布axial power distribution燃料管理方案fuel management scheme燃料-包壳交互作用fuel-clad interaction effect芯块-包壳交互作用(PCI) pellet-clad interaction(燃料)栅格、晶格lattice1.7. 反应堆安全核安全nuclear safety安全功能 safety function衰变热decay heat余热residual heat空泡系数void coefficient法律law法规regulation / code联邦管理法规Code of Federal Regulations (CFR)法案(美)Act导则guidance安全1/2/3级safety class 1/2/3可靠性reliability容限,裕量,边界margin堆芯热裕量core thermal margin堵管裕量tube plugging margin运行安全裕量operating margin标准,准则criterion,复数形式: criteria概率安全分析Probabilistic Safety Analysis (PSA)概率风险分析Probabilistic Risk Analysis (PRA)确定论安全分析deterministic safety analysis初步安全分析报告Preliminary Safety Analysis Report (PSAR)最终安全分析报告Final Safety Analysis Report (FSAR)安全评价报告safety evaluation report事件incident事故accident后果consequence严重事故severe accident堆芯损毁core damage堆芯融化core meltdown全厂断电station blackout冷却剂丧失事故(失水事故)Loss-of-coolant Accident (LOCA)反应性引入事故Reactivity Insertion Accident (RIA)未能紧急停堆的预计瞬变Anticipated Transient Without Scram (ATWS)失电Loss of Power失流Loss of flow先漏后破leak before break (LBB)故障安全,失效保护fail-safe单一故障准则single-failure criterion共因故障common cause failure固有安全性inherent safety非能动安全passive safety冗余性redundancy多样性diversity多层屏障multiple barrier纵深防御defense in depth潜热latent heat焓,热函sensible heat, enthalpy定期安全检查periodic safety inspection许可证license监管regulation核安全准则nuclear safety criteria三哩岛事故Three Mile Island (TMI) accident切尔诺贝利事故Chernobyl accident 工作不正常,故障malfunction失效failure假设始发事件postulated initiating events 事故工况accident condition严重事故severe accident事故处理accident management设计基准事故design basis accident负荷丧失事故loss of electrical load accident主给水丧失事故loss of main feed water accident卡棒事故stuck rod accident弹棒事故rod ejection accident堵管裕量tube plugging margin管道甩摆限制pipe whip restraint在役检查inservice inspection承压热冲击pressurized thermal shock1.8. 放射性与辐射防护radioactivity放射性scatter散射deflect, deflection折射衍射diffraction穿透penetrate, penetration交互作用interact, interaction ionization电离湮灭annihilate (v.), annihilation (n.) 衰减attenuate(v.), attenuation(n.) projectile入射离子radiation protection辐射防护radiation, ray辐射,射线irradiation辐照,(向外)辐射internal exposure内照射external exposure外照射occupational dose职业照射(剂量)fluence注量cosmic ray宇宙射线x-ray X射线α/β/γ射线α/β/γrayhealth physics保健物理shielding屏蔽biological shield生物屏蔽剂量dosedose equivalent剂量当量collective dose集体剂量individual dose个人剂量ingest, ingestion摄入,摄取inhale, inhalation吸入coma昏迷cramp绞痛diarrhea腹泻tremor颤抖vomit呕吐somatic身体的somatic effect躯体反应radiation sickness辐照病变symptom征兆therapy治疗survivor幸存者activation product活化产物effluent废水natural background天然本底sivert希弗spectrum谱雷姆rem氡radon as low as reasonably achievable (ALARA) 合理可行尽量低radioactive waste disposal放射性废物处理high-level (radioactive) waste高放废物low-level (radioactive) waste低放废物1.9. 有关机构International Atomic Energy Agency (IAEA) 国际原子能机构American Society of Mechanical Engineers (ASME) 美国机械工程师学会Nuclear Regulatory Commission (NRC/USNRC) 美国核管会Department Of Energy (DOE) 美国能源部World Association of Nuclear Operators (W ANO) 世界核电运营者协会International Commission on Radiological Protection (ICRP) 国际辐射防护委员会China Atomic Energy Authority (CAEA)中国国家原子能机构State Environment Protection Administration of China国家环保总局1.10. 其它术语1.10.1.表示方向lateral横向longitudinal纵向radial径向perpendicular to垂直于vertically mounted垂直/立式安装circumferential环向axial轴向periphery周边1.10.2.材料失效术语corrosion腐蚀stress corrosion cracking应力腐蚀开裂rapture, fracture, break断裂breach破口肿胀swellingcavitation气蚀pitting点蚀/孔蚀crevice corrosion缝隙腐蚀erosion冲蚀FAC flow accelerated corrosion流动加速腐蚀wastage耗蚀(SG tube) dent凹陷,凹痕fatigue疲劳ageing老化degradation降级wear磨损fretting wear微动磨损creep蠕变stress应力strain应变creep strength蠕变强度tensile strength抗拉强度yield strength屈服强度rapture strength断裂强度nil-ductility transition temperature零延性转变温度thermal stress热应力irradiation swelling辐照肿胀deposit welding, overlaying, build-up welding,surface welding堆焊seal weld密封焊heat affected zone (HAZ) 焊接热影响区1.10.3.核电工程术语procurement征购site厂址call for bid, call for tender招标commercial offer商务标technical offer技术标commencement开工contract合同firm contract不可更改的合同subcontract分包合同commitment承诺,任务job site工地,工作现场technical requirement 技术要求技术规格technical specificationnon-conformance不符合项delivery交货warehouse仓库construction schedule施工计划Free on Board (FOB) 离岸价格Cost Insurance and Freight (CIF) 到岸价格Engineering, Procurement & Construction EPC合同-设计采购建造power grid电网distribution system输变电系统1.10.4.其它compound化合物mixture混合物mass质量momentum动量energy能量potential (energy) 势能kinetic energy动能inertia惯性half-life半衰期mean free path平均自由程fuel cycle燃料循环hot spot热点hot-channel factor热管因子departure from nucleate boiling ratio (DNBR) 偏离泡核沸腾比heat transfer传热heat exchanger换热器heat conduction导热convection对流热辐射thermal / heat radiation干度quality蒸汽steam预应力钢筋混凝土prestressed reinforced concrete / prestressed concrete钢筋混凝土reinforced concrete铁钢沙混凝土Steel shot concret筋,钢筋束tendon流量分配flow distribution电网power grid业主utility承包商contractor分包商sub-contractor压降pressure drop压差differential pressure水位(water) level规定,条款;保障;装备provision地震earthquake地震的seismic飓风tornado暖通空调Heating, Ventilation and Air Conditioning (HV AC)热阱heat sink惰转coastdown惰转流量coastdown flow功率失常激增,功率漂移power excursion 减轻,缓解v. mitigate, n. mitigation公差、容差allowance间隙,公差clearance权重因子weighting factor 1.11. 有必要了解的词汇与短语as a rule of thumb根据经验by orders of magnitude以数量级incipient failure早期故障, 初期故障eliminate, elimination消除derive, derivation, deduce, deduction导出,起源mechanism, approach, principle, theory机理,原理susceptible敏感的susceptibility敏感性toxic有毒的acute急剧的inherit遗传hereditary遗传性的altitude高度postulate, postulation假定,假设permeable可渗透的, 有渗透性的impermeable不可渗透的brittle fracture脆性破裂embrittlement脆化toughness韧性ductility延展性第2章阅读理解题练习2.1. Passage 1As a result reactor designers have paid great attention to the inherent safety of reactors which can be achieved by negative temperature and power coefficients and fail-safe control systems. It can be said with some confidence that present-day thermal reactors are safe in the sense that under no conceivable circumstance can they explode like a bomb, and control systems have been designed which can, in the event of any malfunction on the part of the reactor or its associated plant, automatically and rapidly shut down the reactor, i.e. make it subcritical by a substantial amount, in a very few seconds.1. According to the paragraph, inherent safety of reactors can be achieved by . (C)A. the operators;B. positive temperature and positive power coefficients;C. negative temperature and negative power coefficients;D. passive safety system and positive power coefficients.2. The best title of the passage may probably be . (D)A. fail-safe control system;B. thermal reactor safety and operation;C. automatic protective system;D. inherent safety design of reactors.2.2. Passage IIThe biological shield should contain some hydrogen compound to slow down fast neutrons, and be dense enough to attenuate gamma radiation effectively. Concrete satisfies both these requirements fairly well and is suitable for landbase reactors. Barytes (重晶石) concrete, containing the heavy element barium, and steel-shot concrete have been used for biological shields. They are more dense than ordinary concrete, with improved shielding properties, however their higher cost offsets this advantage. The biological shield for a marine reactor, which is usually a fairly compact pressurized water reactor, must satisfy a minimum space and weight requirement. This leads to a shield design which consists typically of alternate layers of water (for fast neutron slowing) and steel (for gamma ray attenuation).3. According to the above passage, is not possible for constructing biological shield? (C)A. steel;B. concrete;C. graphite;D. paraffin wax.4. Which of the following sentences is not true? (D)A. The biological shield is designed mainly to slow down fast neutrons and attenuate gamma radiation.B. The marine reactor uses alternative steel and water layers as its biological shield.C. The combination of heavy element concrete and steel bars could improve the shielding properties.D. The biological shield should use hydrogen element to slow down fast neutron and attenuate gamma radiations.2.3. Passage IIIIn order to mitigate the effects of large release of steam (an potentially of radioactivity) in the containment, two full capacity independent safety systemsare provided; the reactor building spray system and the reactor building emergency coolers. The systems are designed to provide cool water to condense discharge steam and to prevent containment pressure from reaching its design limit. Individual systems differ considerably but a typical system may be described as follows; The initial capacity of the systems in removing heat from the containment atmosphere is typically 253GJ/hr.When a containment pressure of 4psig is reached, the emergency coolers of the reactor building are actuated. In their post accident mode, the system consists of three units each with a fan and an emergency cooler. As the reactor building air is circulated across a tubular heat exchanger, a portion of steam is condensed. These coolers alone would be capable of returning the containment pressure to near atmospheric within 24 hr after an accident. When the pressure reaches a level of 10 psig, the second safety system, the reactor building spray system, is automatically actuated. It consists of a pump, piping, headers, and spray nozzles arranged uniformly under the containment dome. It can spray borated water into the reactor building at a rate of 11.35m3/min. A sodium hydroxide additive is also provided in the spray water to increase the retention of iodine, and hence, to reduce its concentration in the containment atmosphere in the event of a sizable breach of fuel cladding.5. Two full capacity independent safety systems are provided for the design purpose of . (A)A. condensing the steam released into the containment when pressure exceeds design limit.B. maintaining the high pressure in the containmentC. discharging large amount of steamD. mitigating the effect of radiation hazard to the containment.6. The reactor building spray system will be actuated automatically . (C)A. after 24 hours after the accident;B. immediately after the accident;C. when the containment pressure reaches a level of design limit;D. when the air in the containment is circulated through the heat exchanger.7. Which of the following statements is INCORRECT? (B)A. The emergency cooler consists of fans and heat exchangers.B. The emergency cooler system can spray borated water into containment.C. All the two system are applied for returning the containment pressure tobe blow atmospheric after the accident.D. Sodium hydroxide additive is provided in the spray water to reduce the amount of radioactive fission produces.2.4. Passage IVMany reactor-years of operating experience have shown that it is not the fission chain reaction in the reactor core that is the most likely source of malfunction and accidents, but the “conventional”components of the power plant such as pumps, valves, switches, relays and parts under stress such as pressure vessel or pipework. Human error on the part of operating and maintenance staff has also proved to be a rather frequent source of trouble in nuclear power plant.These factors are not peculiar to nuclear power plant, but they assume great importance because of the hazardous nature of nuclear reactors. Designers have to ensure that all systems should as far as possible be fail-safe and redundant, i.e. if one system fails to function correctly, another is available to fulfill the same function.As stated above, nuclear reactors cannot explode like nuclear bombs. This primarily because of the fast acting negative thermal feedback due to Doppler broadening of the 238U absorption resonances. In addition in thermal reactors where neutrons are moderated, the prompt neutron lifetime Lp is the order of 10-4 second; in a bomb, since the neutrons are unmoderated, the prompt neuron lifetime is of the order of 10-8 seconds. Finally, reactor fuel consists typically of 2 to 3 percent 235U, where as nuclear weapons contain almost pure 239Pu. The net effect of these difference is that, even in a reactor which is totally out of control and gone prompt critical, the reactor period will not be much less than a second or so. In a nuclear bomb, the period is of the order of nanoseconds.(1)According to the text, the most likely source of troubles in a nuclear comes fromA.Core of the reactorB.Conventional componentsC.Parts under stressD.Human error(2)The first sentence of second paragraph “These factors are not peculiar to …”,what does “These factors” mean?A.Human errorB.Malfunction of conventional componentsC.Fission chain reaction in the coreD.All of the above(3)What make the pressurized water reactors can not explode like a nuclear bomb?A.Doppler broadening of the 238U absorption resonancesB.The neutrons are moderatedC.PWR fuel contains much less fissile isotopes than nuclear bombD.All of the above(4)The last two sentences “The net effect of … is of the order of nanoseconds.” Givea comparison about the reactor period, what does the author most likely toexpress?A.The reactor period is too short comparing with a nuclear bombB.The 239Pu in a nuclear bomb is more easily to go prompt criticalityC.The nuclear reactor can not generate large amount of heat as a nuclear bombdoes within very short time, therefore nuclear reactor can not explode.D.The author wants to give us a reference about the data of the reactor periodtime.2.5. Passage VThe primary functions of the control rod drive mechanisms (CRDM) are to insert or withdraw rod cluster control assemblies and gray rod control assembles into or from the core to control average core temperature at a designed speed. A schematic diagram of CRDM is given in Fig 1. Control rod withdrawal one step involves six actions.1) Moveable Gripper Coil B-on.The latch-locking plunger rises andswings the movable gripper latchesinto the drive rod assembly groove. Asmall axial clearance exists betweenthe latch teeth and the drive rod.2) Stationary Gripper Coil A-off.The force of gravity, acting upon thedrive rod assembly and attachedcontrol rod, causes the stationarygripper and plunger to movedownward 1/16 inch, transferring theload of the drive rod assembly andattached control rod to the movablegripper latches. The plungerFig 1. Control rod drive mechanism continues to move downward andswings the stationary gripper latches out of the drive rod assembly groove.3) Lift Coil C-on. The 5/8-inch gap between the movable gripper pole and the lift pole closes, and the drive rod assembly rises one step length.4) Stationary Gripper Coil A-on. The plunger rises and rises the gap below the stationary gripper pole. The three links, pinned to the plunger, swing the stationary gripper latches into a drive rod assembly groove. The latches contact the drive rod assembly and lift it a small fraction of an inch. The small vertical drive rod assembly movement transfers the drive rod assembly load from the movable gripper latches to the stationary gripper latches.5) Movable Gripper Coil –off. The latch-locking plunger separates from the movable gripper pole under the force of a spring and gravity. Three links, pinned to the plunger, swing the three movable gripper latches out of the drive rod assembly groove.6) Lift Coil C –off. The gap between the movable gripper pole and the life pole opens. The movable gripper latches drop 5/8 inch to a position adjacent to a drive rod assemble groove.Repetition of the above six actions will make another step of withdrawal movement of control rod.(1)According to the text, the most likely source of troubles in a nuclear comes fromA.Core of the reactorB.Conventional componentsC.Parts under stressD.Human error(2)According to the text, the most likely source of troubles in a nuclear comes fromA.Core of the reactorB.Conventional componentsC.Parts under stressD.Human error第3章句子翻译-举例3.1. Which 从句(1)The atoms of all elements, which at one time were thought to be thefundamental particles of nature, consist of numbers of three more fundamental particles-protons, neutrons and electrons. 曾经被认为是自然界中基础粒子的原子是由多个更基础的粒子组成-质子、中子和电子。