当前位置:文档之家› 高等半导体物理讲义

高等半导体物理讲义

高等半导体物理课程内容(前置课程: 量子力学,固体物理)第一章能带理论,半导体中得电子态第二章半导体中得电输运第三章半导体中得光学性质第四章超晶格,量子阱前言:半导体理论与器件发展史1926 Bloch 定理1931 Wilson 固体能带论(里程碑)1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。

从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。

1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。

1958 集成电路问世1959 赝势概念得提出,使得固体能带得计算大为简化。

利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。

用赝势方法得到了几乎所有半导体得比较精确得能带结构。

1962 半导体激光器发明1968 硅MOS器件发明及大规模集成电路实现产业化大生产1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。

1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。

1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。

近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。

在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。

人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。

以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。

半导体材料分类:➢元素半导体,Si, Ge IV 族金刚石结构Purity 10N9, Impurity concentration 1012/cm3 ,Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameterP V 族S, Te, Se VI 族➢二元化合物,1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eVGaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV2.IIVI族化合物更强得电荷转移ZnSe 2、67 CdS Z nS CdTeHgTe 0、025 eV (远红外线探测器)3.IIIVII族化合物CuCl >3 eV4.IVIV族化合物红外线探测器PbS 0、37 eV, PbTe 0、29 eV➢氧化物, CuO, CuO2 , ZnO高温超导体,La2CuO4 , Műller, Bednorz➢有机半导体(CH2)n, 聚乙稀咔唑,P、P、P、P、V、K无扩展态,分子能级间得输运,易修饰,电致发光LCD,响应时间短,无显示角问题,全色,能耗低,工艺简单➢磁性半导体➢非晶态半导体第一章能带理论,半导体中得电子态(主要参考:李名復《半导体物理学》)§ 1 基本知识回顾§ 2 正交平面波方法,赝势§ 3 紧束缚近似或原子轨道线性组合近似§ 4 微扰§ 5 缺陷态,有效质量方程§ 1 基本知识回顾11正格子与倒格子Ge, Si, GaAs 得晶体结构,结晶学原胞:面心立方,物理学原胞:正四面体Ge, Si , 金刚石结构GaAS系列,闪锌矿结构倒格子,能量空间布里渊区:面心立方→体心立方12 能带理论得基本假定1)绝热近似(BornOppenheiner近似)考虑到电子质量远小于原子核得质量,也即电子得速度远大于原子核得速度。

因此,在考虑电子得运动时,可认为原子核就是不动得,而电子在固定不动得原子核产生得势场中运动。

这种把电子系统与原子核分开考虑得方法叫绝热近似。

2)平均场近似(单电子近似、HartreeΦok自洽场方法)如果一个电子所受到得库仑力不仅与自己得位置有关,而且还与其她电子得位置有关,并且该电子本身也影响其她电子得运动,即所有电子得运动就是关联得。

这意味着需要联合求解多个薛定谔过程,问题变得异常复杂。

为简化问题,当研究某一个电子运动时,近似地把其她电子对这个电子得作用当作背景,即用一个平均场(自洽场)来代替价电子之间得相互作用,使每个电子得电子间相互作用势仅与该电子得位置有关,而其她电子得位置无关。

同理,可用一种平均场代替所有原子核对电子得作用。

这样,一个多电子体系得问题就被简化成单电子问题。

3)周期势场假定V(r) = V e(r) + Ui(r), Ve(r)代表电子间相互作用势得平均场,就是一个常数。

Ui(r)代表所有原子核对电子得作用得平均场,具有与晶格相同得周期性。

因此:V(r) = V(r+Rn), Rn就是晶格平移矢量。

13 Bloch定理:两种等价得描述Bloch定理描述之一:对于周期势场,即其中Rn取布喇菲格子得所有格矢,单电子薛定谔方程:得本征函数就是按布喇菲格子周期性调幅得平面波,即且 对Rn 取布喇菲格子得所有格矢成立。

Bloch 定理描述之二:对上述得薛定谔方程得每一本征解,存在一波矢k, 使得 对属于布喇菲格子得所有格矢Rn 成立。

14 波函数与狄拉克表示狄拉克表示: | >, 刃矢,ket 。

|ψ >表示波函数ψ描述得状态。

|x ΄ >表示x 坐标得本征态(本征值x ΄),|p ΄ >表示动量得本征态(本征值p ΄), |En >或 |n >表示能量得本征态与| >相应,刁矢< |表示共轭空间得一个抽象矢量,如<ψ |就是|ψ >得共轭矢量。

平面波:狄拉克符号 正交归一Bloch 波: 晶体中单电子薛定谔方程 得解电子波函数满足Bloch 定理,其中)()( )()( )(1)( r e R r r u R r u r u e Vr nk R k i n nk nk n nk nk r k i nk nψψψ⋅=+=+=u nk (r)与晶格周期相同得周期函数。

量子数:好量子数,反映电子得平面波运动共有化部分。

n 晶格周期相关得量子数,不同能带电子在原子上得运动。

15 薛定谔方程一般解晶体中电子波函数 ψk (r)可以一组正交完备得基函数 ϕi (r)展开ψk (r)= ∑i a i ϕi (r) i = 1, 2, 3…… 简单举例: ψk (r) = a 1 ϕ1(r) + a 2 ϕ2(r) + a 3 ϕ3(r)H ψk (r) = E ψk (r),H a 1 ϕ1(r) + H a 2 ϕ2(r) + Ha 3 ϕ3(r) = E[a 1ϕ1(r) +a 2ϕ2(r)+ a 3ϕ3(r)]左乘ϕ1*(r), 实空间积分:⎰ ϕ1*(r) H a 1 ϕ1(r) dr + ⎰ ϕ1*(r)H a 2 ϕ2(r) dr + ⎰ϕ1*(r) H a 3ϕ3(r) dr= ⎰ E[ϕ1*(r)a 1ϕ1(r)+ ϕ1*(r)a 2 ϕ2(r)+ ϕ1*(r)a 3 ϕ3(r)] dr = Ea 1 (1)令⎰ ϕ1*(r) H ϕ1(r) dr = <ϕ1(r)∣H ∣ϕ1(r)> 方程(1)可写成<ϕ1(r)∣H ∣ϕ1(r)>a 1+<ϕ1(r)∣H ∣ϕ2(r)>a 2+<ϕ1(r)∣H ∣ϕ3(r)>a 3 = Ea 1 (2) <ϕ2(r)∣H ∣ϕ1(r)>a 1+<ϕ2(r)∣H ∣ϕ2(r)>a 2+<ϕ2(r)∣H ∣ϕ3(r)>a 3 = Ea 2 (3) <ϕ3(r)∣H ∣ϕ1(r)>a 1+<ϕ3(r)∣H ∣ϕ2(r)>a 2+<ϕ3(r)∣H ∣ϕ3(r)>a 3 = Ea 3 (4) 一组线性联立齐次方程[<ϕ1(r)∣H ∣ϕ1(r)>E]a 1+<ϕ1(r)∣H ∣ϕ2(r)>a 2+<ϕ1(r)∣H ∣ϕ3(r)>a 3= 0 <ϕ2(r)∣H ∣ϕ1(r)>a 1+[<ϕ2(r)∣H ∣ϕ2(r)>E]a 2+<ϕ2(r)∣H ∣ϕ3(r)>a 3=0 <ϕ3(r)∣H ∣ϕ1(r)>a 1+<ϕ3(r)∣H ∣ϕ2(r)>a 2+[<ϕ3(r)∣H ∣ϕ3(r)>E]a 3=0一般表示式: ∑ i,j [<i ∣H ∣j> - E δ i,j ] a j = 0 i, j =1, 2, 3… 通过a j 系数行列式等于零求出能量本征值E ,再求出系数a j 。

晶体中电子波函数 ψk (r)= ∑i a i ϕi (r)...E - 3H 3 2H 3 13 ....... 3H 2 E -2H 2 12 ........ 3H 1 2H 1 11 .=-H H E H如何选择基函数、势场就是计算中得关键。

计算方法: 近自由电子近似:基函数 赝势:势场紧束缚近似: 基函数 微扰 有效质量方程: 势场16近自由电子近似(弱周期势近似)近自由电子近似就是当晶格周期势场起伏很小电子得行为很接近自由电子时采用得近似处理。

对相当多得价电子为s 电子、p 电子得金属,就是很好得近似。

电子感受到得弱周期势,不仅源自于满壳层电子对原子核得屏蔽,而且其她价电子对原子核周期势得再次屏蔽也使周期势场更弱。

在具体得计算上, 弱周期势可瞧作微扰,采用量子力学标准得微扰论方法来处理。

相关主题