当前位置:文档之家› abaqus中实体单元的内力提取方法汇总

abaqus中实体单元的内力提取方法汇总

实体单元建的模型,要提取截面的内力有什么好方法呢?我看过别人的一个帖:对于一般的实体单元结构可以定义surface 然后用section file 输出其中,这个surface可以在cae中定义,也可以在inp中定义,但是由于涉及到边的编号问题,所以在inp中容易出错。

section file 的结果直接在dat中可见。

需要编制小程序将其数据提取。

一定要编个程序才可以提取吗在dat文件里没有找到什么section file是输出在*.fil文件中。

要直接得到截面的total force,moment,heat flux可以在inp中添加:*SECTION PRINT,name=*,surface=**SOF,SOM在dat文件中可以找到总内力和弯矩我做钢筋混凝土的问题,模型分为两个part,分别是钢筋和混凝土,然后Assembe在一起,将钢筋embeded到混凝土内。

我在keywords编辑器End assemble前定义*surface, type=cutting surface,name=surface_1-21.5,0,0,1,0,0怎么也不成,总说定义的截面没有相交(坐标计算没有错误)。

第三行空着(帮助文档说表示截断整个模型)也不行,写上钢筋或混凝土的单元组名(没有另建组,直接用的keywords编辑器中钢筋或混凝土生成单元的组名)也不行。

请问是怎么回事?哪位有相关的例子给我一个,我的QQ:40735053。

还望不吝赐教,谢谢。

Displaying a free body cutYou can define a free body cut to view the resultant forces and moments transmitted across a selected surface of a model. Force vectors are displayed with a single arrowhead and moment vectors with a double arrowhead.To create a free body cut:1. To display the entire model in the viewport, select Tools Display Group Plot All fromthe main menu bar.2. From the main menu bar, select Tools Free Body Cut Manager.3. Click Create in the Free Body Cut Manager.4. From the dialog box that appears, select 3D element faces as the Selection method andclick Continue.5. In the Free Body Cross-Section dialog box, select Surfaces as the Item and Pick fromviewport as the Method.6. In the prompt area, set the selection method to by angle and accept the default angle.7. Select the surface, highlighted in Figure 4–33, to define the free body cut cross-section.a. From the Selection toolbar, toggle off the Select the Entity Closest to theScreen tool and ensure that the Select From All Entities tool is selected.b. As you move the cursor in the viewport, Abaqus/CAE highlights all of the potentialselections and adds ellipsis marks (...) next to the cursor arrow to indicate an ambiguousselection. Position the cursor so that one of the faces of the desired surface ishighlighted, and click to display the first surface selection.Figure 4–33 Selected faces for the free body cross-section.c. Use the Next and Previous buttons to cycle through the possible selections until theappropriate vertical surface is highlighted, and click OK.8. Click Done in the prompt area to indicate your selection is complete. Click OK in the FreeBody Cross-Section dialog box.9. In the Edit Free Body Cut dialog box, accept the default settings for the SummationPoint and the Component Resolution. Click OK to close the dialog box.10. Click Options in the Free Body Cut Manager.11. From the Free Body Plot Options dialog box, select the Force tab in the Color &Style tabbed page. Click the resultant color sample to change the color of the resultant force arrow.12. Once you have selected a new color for the resultant force arrow, click OK in the Free BodyPlot Options dialog box and click Dismiss in the Free Body Cut Manager.The free body cut is displayed in the viewport, as shown in Figure 4–34.Figure 4–34 Free body cut displayed on the connecting lug.Generating tabular data reports for subsets of the modelTabular output data were generated earlier for this model using printed output requests. However, for complicated models it is convenient to write these data for selected regions of the model using Abaqus/Viewer. This is achieved using display groups in conjunction with the report generation feature. For the connecting lug problem we will generate the following tabular data reports: •Stresses in the elements at the built-in end of the lug (to determine the maximum stress in the lug)•Reaction forces at the built-in end of the lug (to check that the reaction forces at the constraints balance the applied loads)•Vertical displacements at the bottom of the hole (to determine the deflection of the lug when the load is applied)Each of these reports will be generated using display groups whose contents are selected in the viewport. Thus, begin by creating and saving display groups for each region of interest.To create and save a display group containing the elements at the built-in end:1. In the Results Tree, double-click Display Groups.2. Choose Elements from the Item list and Pick from viewport as the selection method.3. Restore the option to select entities closest to the screen.4. In the prompt area, set the selection method to by angle; and click the built-in face of the lug.Click Done when all the elements at the built-in face of the lug are highlighted in the viewport.In the Create Display Group dialog box, click Replace followed by Save As. Save thedisplay group as built-in elements.To create and save a display group containing the nodes at the built-in end:1. In the Create Display Group dialog box, choose Nodes from the Item list and Pick fromviewport as the selection method.2. In the prompt area, set the selection method to by angle; and click the built-in face of the lug.Click Done when all the nodes on the built-in face of the lug are highlighted in the viewport. In the Create Display Group dialog box, click Replace followed by Save As. Save thedisplay group as built-in nodes.To create and save a display group containing the nodes at the bottom of the hole:1. In the Create Display Group dialog box, select All from the item list, and click Replace toreset the active display group to include the entire model.2. In the Create Display Group dialog box, choose Nodes from the Item list and Pick fromviewport as the selection method.3. In the prompt area, set the selection method to individually; and select the nodes at thebottom of the hole in the lug, as indicated in Figure 4–35. Click Done when all the nodes on the bottom of the hole are highlighted in the viewport. In the Create Display Group dialog box,click Replace followed by Save As. Save the display group as nodes at hole bottom.Figure 4–35 Nodes in display group nodes at hole bottom.Now generate the reports.To generate field data reports:1. In the Results Tree, click mouse button 3 on built-in elements underneath the DisplayGroups container. In the menu that appears, select Plot to make it the current display group.2. From the main menu bar, select Report Field Output.3. In the Variable tabbed page of the Report Field Output dialog box, accept the default positionlabeled Integration Point. Click the triangle next to S: Stress components to expand the list of available variables. From this list, select Mises and the six individual stresscomponents: S11, S22, S33, S12, S13, and S23.4. In the Setup tabbed page, name the report Lug.rpt. In the Data region at the bottom of thepage, toggle off Column totals.5. Click Apply.6. In the Results Tree, click mouse button 3 on built-in nodes underneath the DisplayGroups container. In the menu that appears, select Plot to make it the current display group.(To see the nodes, toggle on Show node symbols in the Common Plot Options dialog box.)7. In the Variable tabbed page of the Report Field Output dialog box, change the positionto Unique Nodal. Toggle off S: Stress components, and select RF1, RF2, and RF3 from the list of available RF: Reaction force variables.8. In the Data region at the bottom of the Setup tabbed page, toggle on Column totals.9. Click Apply.10. In the Results Tree, click mouse button 3 on nodes at hole bottom underneath the DisplayGroups container. In the menu that appears, select Plot to make it the current display group.11. In the Variable tabbed page of the Report Field Output dialog box, toggle off RF: Reactionforce, and select U2 from the list of available U: Spatial displacement variables.12. In the Data region at the bottom of the Setup tabbed page, toggle off Column totals.13. Click OK.Open the file Lug.rpt in a text editor. A portion of the table of element stresses is shown below. The element data are given at the element integration points. The integration point associated with a given element is noted under the column labeled Int Pt. The bottom of the table contains information on the maximum and minimum stress values in this group of elements. The results indicate that the maximum Mises stress at the built-in end is approximately 330 MPa. Your results may differ slightly if your mesh is not identical to the one used here.*SECTION PRINTDefine print requests of accumulated quantities on user-defined surface sections.This option is used to provide tabular output of accumulated quantities associated with a user-defined section. Depending on the analysis type the output may include one or several of the following: the total force, the total moment, the total heat flux, the total current, the total mass flow, or the total pore fluid volume flux associated with the section. This option is not available for eigenfrequency extraction, eigenvalue buckling prediction, complex eigenfrequency extraction, or linear dynamics procedures.Product: Abaqus/StandardType: History dataLevel: StepReferences:•“Output to the data and results files,”Section 4.1.2 of the Abaqus Analysis User's Manual •“Abaqus/Standard output variable identifiers,”Section 4.2.1 of the Abaqus Analysis User's ManualRequired parameters:NAMESet this parameter equal to a label that will be used to identify the output for the section. Section names in the same input file must be unique.SURFACESet this parameter equal to the name used in the *SURFACE option to define the surface.Optional parameters:AXESFREQUENCYSet this parameter equal to the output frequency, in increments. The output will always be printed at the last increment of each step unlessFREQUENCY=0. The default is FREQUENCY=1.Set FREQUENCY=0 to suppress the output.UPDATESet UPDATE=NO if output is desired in the original local system of coordinates.Set UPDATE=YES (default) to output quantities in a local system of coordinates that rotates with the average rigid body motion of the surface section. This parameter is relevant only ifAXES=LOCAL and the NLGEOM parameter is active in the step.Optional data lines:First line:1. Node number of the anchor point (blank if coordinates given).2. First coordinate of the anchor point (ignored if node number given).3. Second coordinate of the anchor point (ignored if node number given).4. Third coordinate of the anchor point (for three-dimensional cases only; ignored if node numbergiven).Leave this line blank to allow Abaqus to define the anchor point.Second line:1. Node number used to specify point a in Figure 18.5–1 (blank if coordinates given).2. First coordinate of point a (ignored if node number given).3. Second coordinate of point a (ignored if node number given).The remaining data items are relevant only for three-dimensional cases.4. Third coordinate of point a (ignored if node number given).5. Node number used to specify point b (blank if coordinates given)6. First coordinate of point b (ignored if node number given).7. Second coordinate of point b (ignored if node number given).8. Third coordinate of point b (ignored if node number given).Leave this line blank to allow Abaqus to define the axes.Third line:Figure 18.5–1 User-defined local coordinate system.SOFTotal force in the section..dat: yes .fil: yes .odb Field: no .odb History: noSOMTotal moment in the section..dat: yes .fil: yes .odb Field: no .odb History: noSOCFCenter of the total force in the section..dat: yes .fil: yes .odb Field: no .odb History: no24.4实体单元的截面力/弯矩/转角[url=/forum/viewthread.php?tid=724857]/forum/viewthread.php tid=724857[/url]问:求助:请问abaqus里面怎样看一个构件截面(如:钢骨混凝土压弯柱)的内力啊请问:SRC柱模拟后,如何提取截面内力:如某一截面处的轴力、弯矩、剪力等内容,谢谢。

相关主题