第七章 参数估计第一节 基本概念1、概念网络图{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。
例7.2:设n x x x ,,,,21 是总体的一个样本,试证(1);2110351321x x x ++=∧μ (2);12541313212x x x ++=∧μ(3).12143313213x x x -+=∧μ都是总体均值u 的无偏估计,并比较有效性。
例7.3:设n x x x ,,,,21 是取自总体),(~2σμN X 的样本,试证∑=--=ni i x x n S 122)(11 是2σ的相合估计量。
第二节 重点考核点矩估计和极大似然估计;估计量的优劣;区间估计第三节 常见题型1、矩估计和极大似然估计例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。
例7.5:设总体X 的密度函数为⎪⎩⎪⎨⎧≥=--.,0,1)(/)(其他μθθμx e x f x其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。
试求θ,μ的极大似然估计量。
2、估计量的优劣例7.6:设n 个随机变量n x x x ,,,21 独立同分布,,)(11,1,)(122121∑∑==--===n i i n i i x x n S x n x x D σ 则(A )S 是σ的无偏估计量;(B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量;(D )x S 与2相互独立。
例7.7:设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=,,0,0),(6)(3其他θθθx x xx fn X X X ,,,21 是取自X 的简单随机样本。
(1) 求θ的矩估计量∧θ;(2) 求∧θ的方差D (∧θ);(3) 讨论∧θ的无偏性和一致性(相合性)。
3、区间估计例7.8:从一批钉子中随机抽取16枚,测得其长度(单位:cm )为2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11假设钉子的长度X 服从正态分布),(2σμN ,在下列两种情况下分别求总体均值μ的置信度为90%的置信区间。
(1) 已知σ=0.01. (2) σ未知.例7.9:为了解灯泡使用时数的均值μ及标准差σ,测量10个灯泡,得x =1500小时,S=20小时。
如果已知灯泡的使用时数服从正态分布,求μ和σ的95%的置信区间。
例7.10:设总体X ~N (3.4, 62),从中抽取容量为n 的样本,若要求其样本均值x 位于区间[1.4, 5.4]内的概率不小于0.95,问样本容量n 至少应取多大?第四节 历年真题数学一:1(97,5分)设总体X 的概率密度为⎩⎨⎧<<+=其他,010)1()(x x x f θθ其中n X X X ,,,.121 是未知参数->θ是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
2(99,6分) 设总体X 的概率密度为⎪⎩⎪⎨⎧<<-=其他)(,00)(63θθθx x xx fn X X X ,,,21 是取自总体X 的简单随机样本。
(1) 求θ的矩估计量θ;(2) 求D (θ)。
3(00,6分) 设某种元件的使用寿命X 的概率密度为⎩⎨⎧≤>=--θθθθx x e x f x ,02);()(2 其中θ>0为未知参数。
又设X x x x n 是,,,21 的一组样本观测值,求参数θ的最大似然估计值。
4(02,7分)设总体X 的概率分别为θθθθθ21)1(2321022--p X其中θ(0<θ<21)是未知参数,利用总体X 的如下样本值 3, 1, 3, 0, 3, 1, 2, 3求θ的矩估计值和最大似然估计值。
5(03,4分)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40cm ,则μ的置信度为0.95 的置信区间是。
(注:标准正态分布函数值95.0)645.1(,975.0)96.1(=Φ=Φ)6(03,8分)设总体X 的概率密度为⎩⎨⎧≤>=--θθθx x e x f x ,02)()(2 其中θ>0是未知参数,从总体X 中抽取简单随机样本n X X X ,,,21 ,记^θ=min (n X X X ,,,21 )。
(1) 求总体X 的分布函数F (x ); (2) 求统计量^θ的分布函数)(^x F θ;如果用^θ作为θ的估计量,讨论它是否具有无偏性。
7(04,9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量;(II ) β的最大似然估计量.8.(06,9分)设总体X 的概率密度为()()⎪⎩⎪⎨⎧<<<≤-<<=其它是未知参数其中0,1021 1100,θθθθx x X Fn X X X ,,,21 为来自总体X 的简单随机样本,记N 为样本值n x x x ,,,21 中小于1的个数,求θ的最大似然估计。
数学三:1(91,5分)设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,00,),(1x x e ax x f x αλαλλ其中0,0>>αλ是未知参数是已知常数。
试根据来自总体X 的简单随机样本n X X X ,,21,求λ的最大似然估计量λ。
2(92,3分)设n 个随机变量n X X X ,,21独立同分布,∑∑==--===n i n i i X Xi n S X n X DX 122121)(11,1,σ,则 (A )σ是S 的无偏估计量。
(B )σ是S 的最大似然估计是。
(C )σ是S 的相合估计量(即一致估计量)。
(D )X S 与相互独立。
[ ]3(93,3分) 设总体X 的方差为1,根据来自X 的容量为100的简单随机样本,测得样本均值为5。
则X 的数学期望的置信度近似等于0.95的置信区间为 。
4(96,3分)设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值95.0.5的置信度为则未知参数μ=X 的置信区间是。
5(00,8分)设0.51, 1.25, 0.80, 2.00是来自总体X 的简单随机样本值。
已知Y =ln X 服从正态分布)1,(μN 。
(1) 求X 的数学期望EX (记EX 为b ); (2) 求μ的置信度为0.95的置信区间;(3) 利用上述结果求b 的置信度为0.95的置信区间。
6(02,3分) 设总体X 的概率密度为⎩⎨⎧<≥=--θθθθx x e x f x 若若,0,);()( 则n X X X ,,21是来自总体X 的简单随机样本,则未知参数θ的矩估计量为。
7(04,13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本, (Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.8.(05,4分)设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知。
现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是 (A )()()⎪⎭⎫ ⎝⎛+-164120,16412005.005.0t t (B )()()⎪⎭⎫ ⎝⎛+-164120,1641201.01.0t t (C )()()⎪⎭⎫ ⎝⎛+-154120,15412005.005.0t t (D )()()⎪⎭⎫ ⎝⎛+-154120,1541201.01.0t t 9.(05,13分)设()2,,,21>n X X X n 为来自总体),0(2σN 的简单随机样本,其样本均值为X 。
记X X Y i i -=,n i ,,2,1 =。
求:(I )i Y 的方差i DY ,n i ,,2,1 =;(II )1Y 与n Y 的协方差),(1n Y Y Cov 。
(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c 。
10.(06,13分)设总体X 的概率密度为()⎪⎩⎪⎨⎧<≤-<<=其它,021,110,,x x x f θθθ,其中θ是未知参数)10(<<θ,n X X X ,,,21 为来自总体的随机样本,记N 为样本值n X X X ,,,21 中小于1的个数,求:(I )θ的矩估计;(II )θ的最大似然估计。